In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: The body in a Hilbertian space
- PMID: 19340930
- DOI: 10.1016/j.drudis.2009.01.013
In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part II: The body in a Hilbertian space
Abstract
We have broken old surviving dogmas and concepts used in computational chemistry and created an efficient in silico ADME-T pharmacological properties modeling and prediction toolbox for any xenobiotic. With the help of an innovative and pragmatic approach combining various in silico techniques, like molecular modeling, quantum chemistry and in-house developed algorithms, the interactions between drugs and those enzymes, transporters and receptors involved in their biotransformation can be studied. ADME-T pharmacological parameters can then be predicted after in vitro and in vivo validations of in silico models.
Similar articles
-
In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part I: Beyond the reduction of animal model use.Drug Discov Today. 2009 Apr;14(7-8):401-5. doi: 10.1016/j.drudis.2009.01.009. Drug Discov Today. 2009. PMID: 19340929 Review.
-
Applying machine learning techniques for ADME-Tox prediction: a review.Expert Opin Drug Metab Toxicol. 2015 Feb;11(2):259-71. doi: 10.1517/17425255.2015.980814. Epub 2014 Dec 2. Expert Opin Drug Metab Toxicol. 2015. PMID: 25440524 Review.
-
In silico approaches for predicting ADME properties of drugs.Drug Metab Pharmacokinet. 2004 Oct;19(5):327-38. doi: 10.2133/dmpk.19.327. Drug Metab Pharmacokinet. 2004. PMID: 15548844 Review.
-
Natural modulators of nonalcoholic fatty liver disease: Mode of action analysis and in silico ADME-Tox prediction.Toxicol Appl Pharmacol. 2017 Dec 15;337:45-66. doi: 10.1016/j.taap.2017.10.013. Epub 2017 Nov 5. Toxicol Appl Pharmacol. 2017. PMID: 29056366
-
In silico ADME-Tox modeling: progress and prospects.Expert Opin Drug Metab Toxicol. 2017 Nov;13(11):1147-1158. doi: 10.1080/17425255.2017.1389897. Epub 2017 Oct 13. Expert Opin Drug Metab Toxicol. 2017. PMID: 28988506 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources