Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 1;92(3):1218-24.
doi: 10.1002/jbm.a.32463.

Titanium dioxide nanotubes enhance bone bonding in vivo

Affiliations

Titanium dioxide nanotubes enhance bone bonding in vivo

Lars M Bjursten et al. J Biomed Mater Res A. .

Abstract

Implant topography is critical to the clinical success of bone-anchored implants, yet little is known how nano-modified implant topography affects osseointegration. We investigate the in vivo bone bonding of two titanium implant surfaces: titanium dioxide (TiO(2)) nanotubes and TiO(2) gritblasted surfaces. In previous in vitro studies, the topography of the TiO(2) nanotubes improved osteoblast proliferation and adhesion compared with gritblasted titanium surfaces. After four weeks of implantation in rabbit tibias, pull-out testing indicated that TiO(2) nanotubes significantly improved bone bonding strength by as much as nine-fold compared with TiO(2) gritblasted surfaces. Histological analysis confirmed greater bone-implant contact area, new bone formation, and calcium and phosphorus levels on the nanotube surfaces. It is anticipated that further studies will contribute to a better understanding of the effect of implant nanotopography on in vivo bone formation and bonding strength.

PubMed Disclaimer

Publication types

LinkOut - more resources