Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 30;113(17):4941-6.
doi: 10.1021/jp807710y.

Action spectroscopy of gas-phase carboxylate anions by multiple photon IR electron detachment/attachment

Affiliations

Action spectroscopy of gas-phase carboxylate anions by multiple photon IR electron detachment/attachment

Jeffrey D Steill et al. J Phys Chem A. .

Abstract

We report on a form of gas-phase anion action spectroscopy based on infrared multiple photon electron detachment and subsequent capture of the free electrons by a neutral electron scavenger in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This method allows one to obtain background-free spectra of strongly bound anions, for which no dissociation channels are observed. The first gas-phase spectra of acetate and propionate are presented using SF(6) as electron scavenger and a free electron laser as source of intense and tunable infrared radiation. To validate the method, we compare infrared spectra obtained through multiple photon electron detachment/attachment and multiple photon dissociation for the benzoate anion. In addition, different electron acceptors are used, comparing both associative and dissociative electron capture. The relative energies of dissociation (by CO(2) loss) and electron detachment are investigated for all three anions by DFT and CCSD(T) methods. DFT calculations are also employed to predict vibrational frequencies, which provide a good fit to the infrared spectra observed. The frequencies of the symmetric and antisymmetric carboxylate stretching modes for the aliphatic carboxylates are compared to those previously observed in condensed-phase IR spectra and to those reported for gas-phase benzoate, showing a strong influence of the solution environment and a slight substituent effect on the antisymmetric stretch.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources