Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 28;3(4):984-94.
doi: 10.1021/nn900079e.

Lysozyme catalyzes the formation of antimicrobial silver nanoparticles

Affiliations

Lysozyme catalyzes the formation of antimicrobial silver nanoparticles

D Matthew Eby et al. ACS Nano. .

Abstract

Hen egg white lysozyme acted as the sole reducing agent and catalyzed the formation of silver nanoparticles in the presence of light. Stable silver colloids formed after mixing lysozyme and silver acetate in methanol and the resulting nanoparticles were concentrated and transferred to aqueous solution without any significant changes in physical properties. Activity and antimicrobial assays demonstrated lysozyme-silver nanoparticles retained the hydrolase function of the enzyme and were effective in inhibiting growth of Escherichia coli, Staphylococcus aureus, Bacillus anthracis, and Candida albicans. Remarkably, lysozyme-silver nanoparticles demonstrated a strong antimicrobial effect against silver-resistant Proteus mirabilis strains and a recombinant E. coli strain containing the multiple antibiotic- and silver-resistant plasmid, pMG101. Results of toxicological studies using human epidermal keratinocytes revealed that lysozyme-silver nanoparticles are nontoxic at concentrations sufficient to inhibit microbial growth. Overall, the ability of lysozyme to assemble silver nanoparticles in a one-step reaction offers a simple and environmentally friendly approach to form stable colloids of nontoxic silver nanoparticles that combine the antimicrobial properties of lysozyme and silver. The results expand the functionality of nanomaterials for biological systems and represent a novel antimicrobial composite for potential aseptics and therapeutic use in the future.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources