Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72
- PMID: 19346301
- PMCID: PMC2681912
- DOI: 10.1128/JB.01720-08
Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72
Abstract
DraT/DraG-mediated posttranslational regulation of the nitrogenase Fe protein by ADP-ribosylation has been described for a few diazotrophic bacteria belonging to the class Alphaproteobacteria. Here we present for the first time the DraT/DraG system of a betaproteobacterium, Azoarcus sp. strain BH72, a diazotrophic grass endophyte. Its genome harbors one draT ortholog and two physically unlinked genes coding for ADP-ribosylhydrolases. Northern blot analysis revealed cotranscription of draT with two genes encoding hypothetical proteins. Furthermore, draT and draG2 were expressed under all studied conditions, whereas draG1 expression was nitrogen regulated. By using Western blot analysis of deletion mutants and nitrogenase assays in vivo, we demonstrated that DraT is required for the nitrogenase Fe protein modification but not for the physiological inactivation of nitrogenase activity. A second mechanism responsible for nitrogenase inactivation must operate in this bacterium, which is independent of DraT. Fe protein demodification was dependent mainly on DraG1, corroborating the assumption from phylogenetic analysis that DraG2 might be mostly involved in processes other than the posttranslational regulation of nitrogenase. Nitrogenase in vivo reactivation was impaired in a draG1 mutant and a mutant lacking both draG alleles after anaerobiosis shifts and subsequent adjustment to microaerobic conditions, suggesting that modified dinitrogenase reductase was inactive. Our results demonstrate that the DraT/DraG system, despite some differences, is functionally conserved in diazotrophic proteobacteria.
Figures




Similar articles
-
Distinct roles of P(II)-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72.J Bacteriol. 2002 Apr;184(8):2251-9. doi: 10.1128/JB.184.8.2251-2259.2002. J Bacteriol. 2002. PMID: 11914357 Free PMC article.
-
Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense.J Bacteriol. 1993 Nov;175(21):6781-8. doi: 10.1128/jb.175.21.6781-6788.1993. J Bacteriol. 1993. PMID: 8226619 Free PMC article.
-
Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation.J Bacteriol. 1991 Nov;173(21):6903-9. doi: 10.1128/jb.173.21.6903-6909.1991. J Bacteriol. 1991. PMID: 1938894 Free PMC article.
-
Regulation of nitrogenase by reversible mono-ADP-ribosylation.Curr Top Microbiol Immunol. 2015;384:89-106. doi: 10.1007/82_2014_380. Curr Top Microbiol Immunol. 2015. PMID: 24934999 Review.
-
Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.FEMS Microbiol Rev. 2000 Oct;24(4):487-506. doi: 10.1111/j.1574-6976.2000.tb00552.x. FEMS Microbiol Rev. 2000. PMID: 10978548 Review.
Cited by
-
RNA-Seq Provides New Insights into the Gene Expression Changes in Azoarcus olearius BH72 under Nitrogen-Deficient and Replete Conditions beyond the Nitrogen Fixation Process.Microorganisms. 2021 Sep 6;9(9):1888. doi: 10.3390/microorganisms9091888. Microorganisms. 2021. PMID: 34576783 Free PMC article.
-
Diazotroph Genomes and Their Seasonal Dynamics in a Stratified Humic Bog Lake.Front Microbiol. 2020 Jul 1;11:1500. doi: 10.3389/fmicb.2020.01500. eCollection 2020. Front Microbiol. 2020. PMID: 32714313 Free PMC article.
-
Engineered plant control of associative nitrogen fixation.Proc Natl Acad Sci U S A. 2022 Apr 19;119(16):e2117465119. doi: 10.1073/pnas.2117465119. Epub 2022 Apr 11. Proc Natl Acad Sci U S A. 2022. PMID: 35412890 Free PMC article.
-
Nitrogen Fixation and Ammonium Assimilation Pathway Expression of Geobacter sulfurreducens Changes in Response to the Anode Potential in Microbial Electrochemical Cells.Appl Environ Microbiol. 2023 Apr 26;89(4):e0207322. doi: 10.1128/aem.02073-22. Epub 2023 Mar 28. Appl Environ Microbiol. 2023. PMID: 36975810 Free PMC article.
References
-
- Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons, New York, NY.
-
- Dean, D. R., and M. R. Jacobson. 1992. Biochemical genetics of nitrogenase, p. 763-835. In G. Stacey, R. H. Burris, and H. J. Evans (ed.), Biological nitrogen fixation. Chapman and Hall, New York, NY.
-
- Durner, J., I. Böhm, H. Hilz, and P. Böger. 1994. Posttranslational modification of nitrogenase. Differences between the purple bacterium Rhodospirillum rubrum and the cyanobacterium Anabaena variabilis. Eur. J. Biochem. 220125-130. - PubMed
-
- Edgren, T., and S. Nordlund. 2005. Electron transport to nitrogenase in Rhodospirillum rubrum: identification of a new fdxN gene encoding the primary electron donor to nitrogenase. FEMS Microbiol. Lett. 245345-351. - PubMed
-
- Egener, T., T. Hurek, and B. Reinhold-Hurek. 1999. Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol. Plant-Microbe Interact. 12813-819. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources