Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle
- PMID: 19346311
- PMCID: PMC2681906
- DOI: 10.1128/JB.01767-08
Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle
Abstract
The facultative intracellular bacterial pathogen Brucella infects a wide range of warm-blooded land and marine vertebrates and causes brucellosis. Currently, there are nine recognized Brucella species based on host preferences and phenotypic differences. The availability of 10 different genomes consisting of two chromosomes and representing six of the species allowed for a detailed comparison among themselves and relatives in the order Rhizobiales. Phylogenomic analysis of ortholog families shows limited divergence but distinct radiations, producing four clades as follows: Brucella abortus-Brucella melitensis, Brucella suis-Brucella canis, Brucella ovis, and Brucella ceti. In addition, Brucella phylogeny does not appear to reflect the phylogeny of Brucella species' preferred hosts. About 4.6% of protein-coding genes seem to be pseudogenes, which is a relatively large fraction. Only B. suis 1330 appears to have an intact beta-ketoadipate pathway, responsible for utilization of plant-derived compounds. In contrast, this pathway in the other species is highly pseudogenized and consistent with the "domino theory" of gene death. There are distinct shared anomalous regions (SARs) found in both chromosomes as the result of horizontal gene transfer unique to Brucella and not shared with its closest relative Ochrobactrum, a soil bacterium, suggesting their acquisition occurred in spite of a predominantly intracellular lifestyle. In particular, SAR 2-5 appears to have been acquired by Brucella after it became intracellular. The SARs contain many genes, including those involved in O-polysaccharide synthesis and type IV secretion, which if mutated or absent significantly affect the ability of Brucella to survive intracellularly in the infected host.
Figures




Similar articles
-
Whole-genome-based phylogeny and divergence of the genus Brucella.J Bacteriol. 2009 Apr;191(8):2864-70. doi: 10.1128/JB.01581-08. Epub 2009 Feb 6. J Bacteriol. 2009. PMID: 19201792 Free PMC article.
-
Brucella microti: the genome sequence of an emerging pathogen.BMC Genomics. 2009 Aug 4;10:352. doi: 10.1186/1471-2164-10-352. BMC Genomics. 2009. PMID: 19653890 Free PMC article.
-
The genome sequence of Brucella pinnipedialis B2/94 sheds light on the evolutionary history of the genus Brucella.BMC Evol Biol. 2011 Jul 11;11:200. doi: 10.1186/1471-2148-11-200. BMC Evol Biol. 2011. PMID: 21745361 Free PMC article.
-
Brucella evolution and taxonomy.Vet Microbiol. 2002 Dec 20;90(1-4):209-27. doi: 10.1016/s0378-1135(02)00210-9. Vet Microbiol. 2002. PMID: 12414145 Review.
-
Advancement of knowledge of Brucella over the past 50 years.Vet Pathol. 2014 Nov;51(6):1076-89. doi: 10.1177/0300985814540545. Epub 2014 Jun 30. Vet Pathol. 2014. PMID: 24981716 Review.
Cited by
-
Seroprevalence of Brucella Infection in Wild Boars (Sus scrofa) of Bavaria, Germany, 2019 to 2021 and Associated Genome Analysis of Five B. suis Biovar 2 Isolates.Microorganisms. 2023 Feb 14;11(2):478. doi: 10.3390/microorganisms11020478. Microorganisms. 2023. PMID: 36838443 Free PMC article.
-
Complete genome sequences of Brucella melitensis strains M28 and M5-90, with different virulence backgrounds.J Bacteriol. 2011 Jun;193(11):2904-5. doi: 10.1128/JB.00357-11. Epub 2011 Apr 8. J Bacteriol. 2011. PMID: 21478357 Free PMC article.
-
Comparison of genomes of Brucella melitensis M28 and the B. melitensis M5-90 derivative vaccine strain highlights the translation elongation factor Tu gene tuf2 as an attenuation-related gene.Infect Immun. 2013 Aug;81(8):2812-8. doi: 10.1128/IAI.00224-13. Epub 2013 May 28. Infect Immun. 2013. PMID: 23716607 Free PMC article.
-
Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.Front Cell Infect Microbiol. 2012 Feb 1;2:2. doi: 10.3389/fcimb.2012.00002. eCollection 2012. Front Cell Infect Microbiol. 2012. PMID: 22919594 Free PMC article. Review.
-
Intraspecies biodiversity of the genetically homologous species Brucella microti.Appl Environ Microbiol. 2012 Mar;78(5):1534-43. doi: 10.1128/AEM.06351-11. Epub 2011 Dec 30. Appl Environ Microbiol. 2012. PMID: 22210211 Free PMC article.
References
-
- Alsmark, C. M., A. C. Frank, E. O. Karlberg, B. A. Legault, D. H. Ardell, B. Canbäck, A. S. Eriksson, A. K. Näslund, S. A. Handley, M. Huvet, B. La Scola, M. Holmberg, and S. G. Andersson. 2004. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc. Natl. Acad. Sci. USA 1019716-9721. - PMC - PubMed
-
- Andersson, S. G., A. S. Eriksson, A. K. Naslund, M. S. Andersen, and C. G. Kurland. 1996. The Rickettsia prowazekii genome: a random sequence analysis. Microb. Comp. Genomics 1293-315. - PubMed
-
- Arimi, S. M., E. Koroti, E. K. Kang'ethe, A. O. Omore, and J. J. McDermott. 2005. Risk of infection with Brucella abortus and Escherichia coli O157:H7 associated with marketing of unpasteurized milk in Kenya. Acta Trop. 961-8. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous