Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 21;54(8):2557-69.
doi: 10.1088/0031-9155/54/8/020. Epub 2009 Apr 6.

Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples

Affiliations

Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples

Joseph J O'Hagan et al. Phys Med Biol. .

Abstract

The elastic and hyperelastic properties of biological soft tissues have been of interest to the medical community. There are several biomedical applications where parameters characterizing such properties are critical for a reliable clinical outcome. These applications include surgery planning, needle biopsy and brachtherapy where tissue biomechanical modeling is involved. Another important application is interpreting nonlinear elastography images. While there has been considerable research on the measurement of the linear elastic modulus of small tissue samples, little research has been conducted for measuring parameters that characterize the nonlinear elasticity of tissues included in tissue slice specimens. This work presents hyperelastic measurement results of 44 pathological ex vivo breast tissue samples. For each sample, five hyperelastic models have been used, including the Yeoh, N = 2 polynomial, N = 1 Ogden, Arruda-Boyce, and Veronda-Westmann models. Results show that the Yeoh, polynomial and Ogden models are the most accurate in terms of fitting experimental data. The results indicate that almost all of the parameters corresponding to the pathological tissues are between two times to over two orders of magnitude larger than those of normal tissues, with C(11) showing the most significant difference. Furthermore, statistical analysis indicates that C(02) of the Yeoh model, and C(11) and C(20) of the polynomial model have very good potential for cancer classification as they show statistically significant differences for various cancer types, especially for invasive lobular carcinoma. In addition to the potential for use in cancer classification, the presented data are very important for applications such as surgery planning and virtual reality based clinician training systems where accurate nonlinear tissue response modeling is required.

PubMed Disclaimer

Publication types

LinkOut - more resources