Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May 11;10(5):1025-31.
doi: 10.1021/bm801243u.

Effect of molecular weight, crystallinity, and hydrophobicity on the acoustic activation of polymer-shelled ultrasound contrast agents

Affiliations

Effect of molecular weight, crystallinity, and hydrophobicity on the acoustic activation of polymer-shelled ultrasound contrast agents

Ceciel Chlon et al. Biomacromolecules. .

Abstract

Polymer-shelled microbubbles are applied as ultrasound contrast agents. To investigate the effect of the polymer on microbubble preparation and acoustic properties, polylactides with systematic variations in molecular weight, crystallinity, and end-group hydrophobicity were used. Polymer-shelled cyclodecane filled capsules were prepared by emulsification, and the cyclodecane was removed by lyophilization to obtain hollow capsules. Complete removal of cyclodecane from the microcapsules was only achieved for short chain (about M(w) 6000) crystalline polymers. The pressure threshold for acoustic destruction of the microbubbles was found to increase with molecular weight. Noncrystalline polymers showed a higher threshold for destruction than crystalline polymers. Hydrophobically modified short chain crystalline polymers showed the steepest increase in acoustic destruction after the threshold as a function of the applied pressure, which is a favorable characteristic for ultrasound mediated drug delivery. Microcapsules made with such polymers had an inhomogeneous surface including pores through which cyclodecane was lyophilized efficiently.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources