CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy
- PMID: 19351775
- PMCID: PMC2883446
- DOI: 10.1158/1078-0432.CCR-08-1137
CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy
Erratum in
- Clin Cancer Res. 2009 May 15;15(10):3643
Abstract
Transcription factors are key regulators of the pattern of gene expression in a cell and directly control central processes such as proliferation, survival, self-renewal, and invasion. Given this critical role, the function of transcription factors is normally regulated closely, often through transient phosphorylation. Although transcription factors are not often directly modified by mutations in cancer cells, they frequently become activated constitutively through mutations affecting "upstream" pathways. By continually driving the expression of key target genes, these oncogenic transcription factors play a central role in tumor pathogenesis. One such transcription factor is the cAMP-regulatory element-binding protein (CREB), which can be activated through phosphorylation by a number of kinases, including Akt, p90Rsk, protein kinase A, and calcium/calmodulin-dependent kinases and regulates genes whose deregulated expression promotes oncogenesis, including cyclins, Bcl-2 family members, and Egr-1. CREB is overexpressed and constitutively phosphorylated in a number of forms of human cancer, including acute myeloid leukemia (AML) and non-small cell lung cancer, and appears to play a direct role in disease pathogenesis and prognosis. Although transcription factors have not been a central focus of drug development, recent advances suggest that CREB and other such proteins may be worthwhile targets for cancer therapy.
Conflict of interest statement
No potential conflicts of interest were disclosed.
Figures

References
-
- Axelrad AA, Eskinazi D, Correa PN, Amato D. Hypersensitivity of circulating progenitor cells to megakaryocyte growth and development factor (PEG-rHu MGDF) in essential thrombocythemia. Blood. 2000;96:3310–21. - PubMed
-
- Correa PN, Eskinazi D, Axelrad AA. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro : studies in an improved serum-free medium. Blood. 1994;83:99–112. - PubMed
-
- Dai CH, Krantz SB, Dessypris EN, Means RT, Jr, Horn ST, Gilbert HS. Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood. 1992;80:891–9. - PubMed
-
- DiPersio J, Billing P, Kaufman S, Eghtesady P, Williams RE, Gasson JC. Characterization of the human granulocyte-macrophage colony-stimulating factor receptor. J Biol Chem. 1988;263:1834–41. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical