Global expression profiling reveals regulation of CTGF/CCN2 during lactogenic differentiation
- PMID: 19353304
- PMCID: PMC2686753
- DOI: 10.1007/s12079-009-0047-5
Global expression profiling reveals regulation of CTGF/CCN2 during lactogenic differentiation
Abstract
Mammary epithelial cells go through a series of developmental changes during pregnancy and lactation including proliferation, differentiation, secretion and apoptosis. HC11 mouse mammary epithelial cells, which undergo lactogen-induced differentiation in cell culture, were used to follow the changes in gene expression during this process. The expression profiles of over 20,000 genes were compared in HC11 cells undergoing lactogenic differentiation to non-differentiated cells using DNA microarray analysis. Greater than two fold changes were detected in 998 genes in the differentiated cells versus growth controls. Several genes including CTGF/CCN2 exhibited greater than five-fold increase. Validation of the gene expression pattern for more than twenty genes was performed. The results indicate the involvement of numerous genes and pathways in the differentiation of mouse mammary epithelial cells in culture and they identify genetic pathways associated with specific transcriptional regulation. In addition, the expression of a subset of genes regulated by lactogenic differentiation in HC11 cells, including CTGF/CCN2 and osteopontin, was examined in mouse mammary glands revealing expression during pregnancy and lactation that declined during involution of the glands. To probe the mechanism by which epidermal growth factor (EGF), a known inhibitor of lactogenic differentiation in HC11 cells, blocks lactogenesis, the HC11 cells stimulated with lactogenic hormone in the presence of EGF were profiled. This data revealed EGF regulation of a specific subset of genes including important cell cycle regulators. The studies confirm the value of expression profiling in defining gene transcription associated with differentiation of mammary epithelial cells.
Figures



Similar articles
-
Comprehensive profiling of transcriptional networks specific for lactogenic differentiation of HC11 mammary epithelial stem-like cells.Sci Rep. 2018 Aug 6;8(1):11777. doi: 10.1038/s41598-018-30122-4. Sci Rep. 2018. PMID: 30082875 Free PMC article.
-
Connective Tissue Growth Factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion.BMC Cell Biol. 2010 May 24;11:35. doi: 10.1186/1471-2121-11-35. BMC Cell Biol. 2010. PMID: 20497571 Free PMC article.
-
Glucocorticoid induced expression of connective tissue growth factor contributes to lactogenic differentiation of mouse mammary epithelial cells.J Cell Physiol. 2008 Jan;214(1):38-46. doi: 10.1002/jcp.21159. J Cell Physiol. 2008. PMID: 17541935
-
Immune cell regulators in mouse mammary development and involution.J Anim Sci. 2009 Apr;87(13 Suppl):35-42. doi: 10.2527/jas.2008-1333. Epub 2008 Oct 10. J Anim Sci. 2009. PMID: 18849387 Review.
-
Microarray analysis of the involution switch.J Mammary Gland Biol Neoplasia. 2003 Jul;8(3):309-19. doi: 10.1023/b:jomg.0000010031.53310.92. J Mammary Gland Biol Neoplasia. 2003. PMID: 14973375 Review.
Cited by
-
Comprehensive profiling of transcriptional networks specific for lactogenic differentiation of HC11 mammary epithelial stem-like cells.Sci Rep. 2018 Aug 6;8(1):11777. doi: 10.1038/s41598-018-30122-4. Sci Rep. 2018. PMID: 30082875 Free PMC article.
-
Connective Tissue Growth Factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion.BMC Cell Biol. 2010 May 24;11:35. doi: 10.1186/1471-2121-11-35. BMC Cell Biol. 2010. PMID: 20497571 Free PMC article.
-
Remodeling of Zn2+ homeostasis upon differentiation of mammary epithelial cells.Metallomics. 2020 Mar 25;12(3):346-362. doi: 10.1039/c9mt00301k. Metallomics. 2020. PMID: 31950952 Free PMC article.
-
RNA sequencing of murine mammary epithelial stem-like cells (HC11) undergoing lactogenic differentiation and its comparison with embryonic stem cells.BMC Res Notes. 2018 Apr 11;11(1):241. doi: 10.1186/s13104-018-3351-4. BMC Res Notes. 2018. PMID: 29642945 Free PMC article.
-
Short Time-Series Expression Transcriptome Data Reveal the Gene Expression Patterns of Dairy Cow Mammary Gland as Milk Yield Decreased Process.Genes (Basel). 2021 Jun 20;12(6):942. doi: 10.3390/genes12060942. Genes (Basel). 2021. PMID: 34203058 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1083/jcb.200601059', 'is_inner': False, 'url': 'https://doi.org/10.1083/jcb.200601059'}, {'type': 'PMC', 'value': 'PMC2063893', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC2063893/'}, {'type': 'PubMed', 'value': '16754961', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16754961/'}]}
- Akhtar N, Streuli CH (2006) Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. J Cell Biol 173:781–793. doi:10.1083/jcb.200601059 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1074/jbc.273.13.7709', 'is_inner': False, 'url': 'https://doi.org/10.1074/jbc.273.13.7709'}, {'type': 'PubMed', 'value': '9516478', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9516478/'}]}
- Ali S (1998) Prolactin receptor regulates Stat5 tyrosine phosphporylation and nuclear translocation by two separate pathways. J Biol Chem 273:7709–7716. doi:10.1074/jbc.273.13.7709 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1186/bcr1653', 'is_inner': False, 'url': 'https://doi.org/10.1186/bcr1653'}, {'type': 'PMC', 'value': 'PMC1851396', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1851396/'}, {'type': 'PubMed', 'value': '17338830', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17338830/'}]}
- Anderson SM, Rudolph MC, McManaman JL, Neville MC (2007) Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis!. Breast Cancer Res 9:204. doi:10.1186/bcr1653 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC454494', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC454494/'}, {'type': 'PubMed', 'value': '3416834', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/3416834/'}]}
- Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B (1988) Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J 7:2089–2095 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1023/A:1023823803510', 'is_inner': False, 'url': 'https://doi.org/10.1023/a:1023823803510'}, {'type': 'PubMed', 'value': '12831056', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12831056/'}]}
- Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5:153–165. doi:10.1023/A:1023823803510 - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous