Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 8:6:34.
doi: 10.1186/1742-4690-6-34.

Isolation and characterization of a small antiretroviral molecule affecting HIV-1 capsid morphology

Affiliations

Isolation and characterization of a small antiretroviral molecule affecting HIV-1 capsid morphology

Samir Abdurahman et al. Retrovirology. .

Abstract

Background: Formation of an HIV-1 particle with a conical core structure is a prerequisite for the subsequent infectivity of the virus particle. We have previously described that glycineamide (G-NH2) when added to the culture medium of infected cells induces non-infectious HIV-1 particles with aberrant core structures.

Results: Here we demonstrate that it is not G-NH2 itself but a metabolite thereof that displays antiviral activity. We show that conversion of G-NH2 to its antiviral metabolite is catalyzed by an enzyme present in bovine and porcine but surprisingly not in human serum. Structure determination by NMR suggested that the active G-NH2 metabolite was alpha-hydroxy-glycineamide (alpha-HGA). Chemically synthesized alpha-HGA inhibited HIV-1 replication to the same degree as G-NH2, unlike a number of other synthesized analogues of G-NH2 which had no effect on HIV-1 replication. Comparisons by capillary electrophoresis and HPLC of the metabolite with the chemically synthesized alpha-HGA further confirmed that the antiviral G-NH2-metabolite indeed was alpha-HGA.

Conclusion: alpha-HGA has an unusually simple structure and a novel mechanism of antiviral action. Thus, alpha-HGA could be a lead for new antiviral substances belonging to a new class of anti-HIV drugs, i.e. capsid assembly inhibitors.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Antiviral activity of G-NH2 and characterization of G-NH2 metabolite obtained after dialysis against FCS or PS. (A) H9 cells (105) were infected with the SF-2 strain of HIV-1 and cultured in medium containing 100 μM G-NH2 and either 10% fetal calf serum (FCS) or human serum (HS). Ten days post-infection, the level of p24-antigen in the culture supernatants was assayed with a p24-ELISA. (B) H9 cells infected with the SF-2 strain of HIV-1 were cultured in medium containing 10% human serum (HS) and either 100 μM G-NH2 or a dialysis solution (DS) of 1/10 dilution of 1 mM G-NH2 dialyzed against FCS. Untreated cultures without any addition of G-NH2 or DS served as controls. (C) Infected H9 cells were cultured in the presence of 10% boiled porcine serum (BPS) or non-boiled porcine serum (PS). The infected cultures were cultured with the addition of 100 μM G-NH2, DS or were left untreated. Virus production was assessed using an RT assay. Error bars indicate standard deviations from quadruple cultures.
Figure 2
Figure 2
HPLC analysis of G-NH2 and the G-NH2-derived metabolite Met-X. HPLC chromatograms of dialysis solution (DS) after dialyzing 1 mM G-NH2 against porcine serum (PS) at 37°C (A) and at 4°C (B) or human serum at 37°C. The dialysis solutions were analyzed with a cationic ion-exchange column (Theoquest Hypersil SCX, Thermo), and the absorbance was measured at 206 nm.
Figure 3
Figure 3
Conversion of G-NH2 to Met-X in different sera. 14C-labeled G-NH2 was incubated with sera from different species at different time points as indicated in the figure. Conversion to Met-X was analyzed by HPLC. Percent conversion to Met-X for respective sera is depicted.
Figure 4
Figure 4
Chemical structure and production of G-NH2-derived metabolite after dialysis against porcine serum. The chemical structures of doubly labeled glycine with two 13C- and one 15N-isotopes (A) which was transformed into labeled glycineamide (B). The latter was dialyzed against porcine serum at 37°C, and the 13C2 15N-labeled product (C) here is referred to as Met-X. This compound was purified by HPLC and concentrated before being analyzed with NMR.
Figure 5
Figure 5
Comparison of Met-X with α-HGA. HPLC analysis of synthetically produced α-HGA and Met-X, the latter produced enzymatically after dialyzing 1 mM G-NH2 against PS at 37°C, is depicted in panel A, and capillary electrophoresis analysis of α-HGA and Met-X in panel B.
Figure 6
Figure 6
Biological and antiviral comparison of α-HGA and some structurally related compounds. Chemical structures of glycine, glycineamide (G-NH2), α-HGA, oxamic acid, oxamide, α-methoxy glycineamide and Boc-α-methoxy glycineamide (A). Antiviral activity of 100 μM of respective compound added to HIV-1 SF-2 infected H9 cells cultured in the presence of 10% fetal bovine serum (B). Dose response of the antiviral activity of synthetically produced α-HGA (C).

References

    1. Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol. 2004;11:672–675. - PubMed
    1. Lanman J, Lam TT, Barnes S, Sakalian M, Emmett MR, Marshall AG, Prevelige PE., Jr Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol. 2003;325:759–772. - PubMed
    1. Li S, Hill CP, Sundquist WI, Finch JT. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature. 2000;407:409–413. - PubMed
    1. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, Jr, Sowder RC, 2nd, Barsov E, Hood BL, Fisher RJ, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80:9039–9052. - PMC - PubMed
    1. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996;87:1285–1294. - PubMed

Publication types

MeSH terms