Smad2 and 3 transcription factors control muscle mass in adulthood
- PMID: 19357234
- DOI: 10.1152/ajpcell.00104.2009
Smad2 and 3 transcription factors control muscle mass in adulthood
Abstract
Loss of muscle mass occurs in a variety of diseases, including cancer, chronic heart failure, aquired immunodeficiency syndrome, diabetes, and renal failure, often aggravating pathological progression. Preventing muscle wasting by promoting muscle growth has been proposed as a possible therapeutic approach. Myostatin is an important negative modulator of muscle growth during myogenesis, and myostatin inhibitors are attractive drug targets. However, the role of the myostatin pathway in adulthood and the transcription factors involved in the signaling are unclear. Moreover, recent results confirm that other transforming growth factor-beta (TGF-beta) members control muscle mass. Using genetic tools, we perturbed this pathway in adult myofibers, in vivo, to characterize the downstream targets and their ability to control muscle mass. Smad2 and Smad3 are the transcription factors downstream of myostatin/TGF-beta and induce an atrophy program that is muscle RING-finger protein 1 (MuRF1) independent. Furthermore, Smad2/3 inhibition promotes muscle hypertrophy independent of satellite cells but partially dependent of mammalian target of rapamycin (mTOR) signaling. Thus myostatin and Akt pathways cross-talk at different levels. These findings point to myostatin inhibitors as good drugs to promote muscle growth during rehabilitation, especially when they are combined with IGF-1-Akt activators.
Comment in
-
Myostatin and muscle fiber size. Focus on "Smad2 and 3 transcription factors control muscle mass in adulthood" and "Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size".Am J Physiol Cell Physiol. 2009 Jun;296(6):C1245-7. doi: 10.1152/ajpcell.00154.2009. Epub 2009 Apr 8. Am J Physiol Cell Physiol. 2009. PMID: 19357232 No abstract available.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
