Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;57(4):821-9.
doi: 10.1109/TBME.2009.2018297. Epub 2009 Apr 7.

Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: application to ECG-derived respiration

Affiliations

Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: application to ECG-derived respiration

Philip Langley et al. IEEE Trans Biomed Eng. 2010 Apr.

Abstract

An algorithm for analyzing changes in ECG morphology based on principal component analysis (PCA) is presented and applied to the derivation of surrogate respiratory signals from single-lead ECGs. The respiratory-induced variability of ECG features, P waves, QRS complexes, and T waves are described by the PCA. We assessed which ECG features and which principal components yielded the best surrogate for the respiratory signal. Twenty subjects performed controlled breathing for 180 s at 4, 6, 8, 10, 12, and 14 breaths per minute and normal breathing. ECG and breathing signals were recorded. Respiration was derived from the ECG by three algorithms: the PCA-based algorithm and two established algorithms, based on RR intervals and QRS amplitudes. ECG-derived respiration was compared to the recorded breathing signal by magnitude squared coherence and cross-correlation. The top ranking algorithm for both coherence and correlation was the PCA algorithm applied to QRS complexes. Coherence and correlation were significantly larger for this algorithm than the RR algorithm(p < 0.05 and p < 0.0001, respectively) but were not significantly different from the amplitude algorithm. PCA provides a novel algorithm for analysis of both respiratory and nonrespiratory related beat-to-beat changes in different ECG features.

PubMed Disclaimer

Publication types

LinkOut - more resources