Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666
- PMID: 19363075
- PMCID: PMC2687319
- DOI: 10.1128/AEM.00031-09
Proteomic and transcriptomic analyses reveal genes upregulated by cis-dichloroethene in Polaromonas sp. strain JS666
Abstract
Polaromonas sp. strain JS666 is the only bacterial isolate capable of using cis-dichloroethene (cDCE) as a sole carbon and energy source. Studies of cDCE degradation in this novel organism are of interest because of potential bioremediation and biocatalysis applications. The primary cellular responses of JS666 to growth on cDCE were explored using proteomics and transcriptomics to identify the genes upregulated by cDCE. Two-dimensional gel electrophoresis revealed upregulation of genes annotated as encoding glutathione S-transferase, cyclohexanone monooxygenase, and haloacid dehalogenase. DNA microarray experiments confirmed the proteomics findings that the genes indicated above were among the most highly upregulated by cDCE. The upregulation of genes with antioxidant functions and the inhibition of cDCE degradation by elevated oxygen levels suggest that cDCE induces an oxidative stress response. Furthermore, the upregulation of a predicted ABC transporter and two sodium/solute symporters suggests that transport is important in cDCE degradation. The omics data were integrated with data from compound-specific isotope analysis (CSIA) and biochemical experiments to develop a hypothesis for cDCE degradation pathways in JS666. The CSIA results indicate that the measured isotope enrichment factors for aerobic cDCE degradation ranged from -17.4 to -22.4 per thousand. Evidence suggests that cDCE degradation via monooxygenase-catalyzed epoxidation (C C cleavage) may be only a minor degradation pathway under the conditions of these experiments and that the major degradation pathway involves carbon-chloride cleavage as the initial step, a novel mechanism. The results provide a significant step toward elucidation of cDCE degradation pathways and enhanced understanding of cDCE degradation in JS666.
Figures






Similar articles
-
Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666.Appl Environ Microbiol. 2013 Apr;79(7):2263-72. doi: 10.1128/AEM.03445-12. Epub 2013 Jan 25. Appl Environ Microbiol. 2013. PMID: 23354711 Free PMC article.
-
Biodegradation of cis-dichloroethene as the sole carbon source by a beta-proteobacterium.Appl Environ Microbiol. 2002 Jun;68(6):2726-30. doi: 10.1128/AEM.68.6.2726-2730.2002. Appl Environ Microbiol. 2002. PMID: 12039726 Free PMC article.
-
Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666.Sci Total Environ. 2017 Dec 15;605-606:99-105. doi: 10.1016/j.scitotenv.2017.06.166. Epub 2017 Jun 26. Sci Total Environ. 2017. PMID: 28662431
-
Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution.FEMS Microbiol Rev. 2010 Jul;34(4):445-75. doi: 10.1111/j.1574-6976.2010.00210.x. Epub 2010 Jan 8. FEMS Microbiol Rev. 2010. PMID: 20146755 Review.
-
Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics.Proteomics. 2004 Dec;4(12):3727-50. doi: 10.1002/pmic.200401017. Proteomics. 2004. PMID: 15540212 Review.
Cited by
-
Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666.Appl Environ Microbiol. 2013 Apr;79(7):2263-72. doi: 10.1128/AEM.03445-12. Epub 2013 Jan 25. Appl Environ Microbiol. 2013. PMID: 23354711 Free PMC article.
-
Genomic analysis of Acinetobacter pittii CEP14 reveals its extensive biodegradation capabilities, including cometabolic degradation of cis-1,2-dichloroethene.Antonie Van Leeuwenhoek. 2022 Aug;115(8):1041-1057. doi: 10.1007/s10482-022-01752-6. Epub 2022 Jun 15. Antonie Van Leeuwenhoek. 2022. PMID: 35701646
-
Microbial degradation of chloroethenes: a review.Environ Sci Pollut Res Int. 2017 May;24(15):13262-13283. doi: 10.1007/s11356-017-8867-y. Epub 2017 Apr 5. Environ Sci Pollut Res Int. 2017. PMID: 28378313 Review.
-
Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis.Microorganisms. 2021 Feb 17;9(2):419. doi: 10.3390/microorganisms9020419. Microorganisms. 2021. PMID: 33671443 Free PMC article. Review.
-
Hydrocarbon biodegradation and transcriptome responses of cellulase, peroxidase, and laccase encoding genes inhabiting rhizospheric fungal isolates.Saudi J Biol Sci. 2021 Apr;28(4):2083-2090. doi: 10.1016/j.sjbs.2021.01.009. Epub 2021 Jan 21. Saudi J Biol Sci. 2021. PMID: 33935563 Free PMC article.
References
-
- Anand, S. S. 2005. Protective effect of vitamin B6 in chromium-induced oxidative stress in liver. J. Appl. Toxicol. 25:440-443. - PubMed
-
- Anders, M. W., and W. Dekant. 1998. Glutathione-dependent bioactivation of haloalkenes. Annu. Rev. Pharmacol. Toxicol. 38:501-537. - PubMed
-
- Bloom, Y., R. Aravena, D. Hunkeler, E. Edwards, and S. K. Frape. 2000. Carbon isotope fractionation during microbial dechlorination of trichloroethene, cis-1,2-dichloroethene, and vinyl chloride: implications for assessment of natural attenuation. Environ. Sci. Technol. 34:2768-2772.
-
- Chartrand, M. M. G., A. Waller, T. E. Mattes, M. Elsner, G. Lacrampe-Couloume, J. M. Gossett, E. A. Edwards, and B. Sherwood Lollar. 2005. Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environ. Sci. Technol. 34:1064-1070. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases