All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor
- PMID: 19364826
- PMCID: PMC2698724
- DOI: 10.1128/MCB.01742-08
All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor
Abstract
Many biological activities of all-trans-retinoic acid (RA) are mediated by the ligand-activated transcription factors termed retinoic acid receptors (RARs), but this hormone can also activate the nuclear receptor peroxisome proliferation-activated receptor beta/delta (PPARbeta/delta). We show here that adipocyte differentiation is accompanied by a shift in RA signaling which, in mature adipocytes, allows RA to activate both RARs and PPARbeta/delta, thereby enhancing lipolysis and depleting lipid stores. In vivo studies using a dietary-induced mouse model of obesity indicated that onset of obesity is accompanied by downregulation of adipose PPARbeta/delta expression and activity. RA treatment of obese mice induced expression of PPARbeta/delta and RAR target genes involved in regulation of lipid homeostasis, leading to weight loss and improved insulin responsiveness. RA treatment also restored adipose PPARbeta/delta expression. The data indicate that suppression of obesity and insulin resistance by RA is largely mediated by PPARbeta/delta and is further enhanced by activation of RARs. By targeting two nuclear receptors, RA may be a uniquely efficacious agent in the therapy and prevention of the metabolic syndrome.
Figures
References
-
- Alvarez, R., J. de Andres, P. Yubero, O. Vinas, T. Mampel, R. Iglesias, M. Giralt, and F. Villarroya. 1995. A novel regulatory pathway of brown fat thermogenesis: retinoic acid is a transcriptional activator of the mitochondrial uncoupling protein gene. J. Biol. Chem. 2705666-5673. - PubMed
-
- Bernlohr, D. A., M. A. Simpson, A. V. Hertzel, and L. J. Banaszak. 1997. Intracellular lipid-binding proteins and their genes. Annu. Rev. Nutr. 17277-303. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical