Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model
- PMID: 19367716
- DOI: 10.1021/pr800162c
Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model
Abstract
We present a Hidden Markov Model method for the prediction of lipoprotein signal peptides of Gram-positive bacteria, trained on a set of 67 experimentally verified lipoproteins. The method outperforms LipoP and the methods based on regular expression patterns, in various data sets containing experimentally characterized lipoproteins, secretory proteins, proteins with an N-terminal TM segment and cytoplasmic proteins. The method is also very sensitive and specific in the detection of secretory signal peptides and in terms of overall accuracy outperforms even SignalP, which is the top-scoring method for the prediction of signal peptides. PRED-LIPO is freely available at http://bioinformatics.biol.uoa.gr/PRED-LIPO/, and we anticipate that it will be a valuable tool for the experimentalists studying secreted proteins and lipoproteins from Gram-positive bacteria.
Similar articles
-
Prediction of signal peptides in archaea.Protein Eng Des Sel. 2009 Jan;22(1):27-35. doi: 10.1093/protein/gzn064. Epub 2008 Nov 6. Protein Eng Des Sel. 2009. PMID: 18988691
-
Combined prediction of Tat and Sec signal peptides with hidden Markov models.Bioinformatics. 2010 Nov 15;26(22):2811-7. doi: 10.1093/bioinformatics/btq530. Epub 2010 Sep 16. Bioinformatics. 2010. PMID: 20847219
-
Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.BMC Bioinformatics. 2005 Jan 12;6:7. doi: 10.1186/1471-2105-6-7. BMC Bioinformatics. 2005. PMID: 15647112 Free PMC article.
-
Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters.Peptides. 2004 Sep;25(9):1425-40. doi: 10.1016/j.peptides.2003.10.028. Peptides. 2004. PMID: 15374646 Review.
-
Machine learning approaches for the prediction of signal peptides and other protein sorting signals.Protein Eng. 1999 Jan;12(1):3-9. doi: 10.1093/protein/12.1.3. Protein Eng. 1999. PMID: 10065704 Review.
Cited by
-
Comparison of Current Methods for Signal Peptide Prediction in Phytoplasmas.Front Microbiol. 2021 Mar 25;12:661524. doi: 10.3389/fmicb.2021.661524. eCollection 2021. Front Microbiol. 2021. PMID: 33841387 Free PMC article.
-
Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome.Front Cell Infect Microbiol. 2019 Apr 24;9:104. doi: 10.3389/fcimb.2019.00104. eCollection 2019. Front Cell Infect Microbiol. 2019. PMID: 31069174 Free PMC article.
-
Fatty acids of Helicobacter pylori lipoproteins CagT and Lpp20.Microbiol Spectr. 2024 May 2;12(5):e0047024. doi: 10.1128/spectrum.00470-24. Epub 2024 Mar 19. Microbiol Spectr. 2024. PMID: 38501821 Free PMC article.
-
An automatic method for identifying surface proteins in bacteria: SLEP.BMC Bioinformatics. 2010 Jan 20;11:39. doi: 10.1186/1471-2105-11-39. BMC Bioinformatics. 2010. PMID: 20089159 Free PMC article.
-
A synthetic 'essentialome' for axenic culturing of 'Candidatus Liberibacter asiaticus'.BMC Res Notes. 2022 Apr 1;15(1):125. doi: 10.1186/s13104-022-05986-5. BMC Res Notes. 2022. PMID: 35365194 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources