Plasmonic nanostructure design for efficient light coupling into solar cells
- PMID: 19367883
- DOI: 10.1021/nl8022548
Plasmonic nanostructure design for efficient light coupling into solar cells
Abstract
We demonstrate that subwavelength scatterers can couple sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated with a corrugated metal film. Using numerical simulations, we find that incoupling of sunlight is remarkably insensitive to incident angle, and that the spectral features of the coupling efficiency originate from several different resonant phenomena. The incoupling cross section can be spectrally tuned and enhanced through modification of the scatterer shape, semiconductor film thickness, and materials choice. We demonstrate that, for example, a single 100 nm wide groove under a 200 nm Si thin film can enhance absorption by a factor of 2.5 over a 10 microm area for the portion of the solar spectrum near the Si band gap. These findings show promise for the design of ultrathin solar cells that exhibit enhanced absorption.
Similar articles
-
Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.Opt Express. 2013 Jan 14;21 Suppl 1:A60-76. doi: 10.1364/OE.21.000A60. Opt Express. 2013. PMID: 23389276
-
Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.Nano Lett. 2015 Aug 12;15(8):4846-52. doi: 10.1021/nl5045583. Epub 2015 Jun 30. Nano Lett. 2015. PMID: 26107806
-
Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.Sci Rep. 2016 Sep 19;6:31451. doi: 10.1038/srep31451. Sci Rep. 2016. PMID: 27641965 Free PMC article.
-
Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.Opt Lett. 2014 Aug 15;39(16):4647-50. doi: 10.1364/OL.39.004647. Opt Lett. 2014. PMID: 25121839
-
Nanostructures for Light Trapping in Thin Film Solar Cells.Micromachines (Basel). 2019 Sep 17;10(9):619. doi: 10.3390/mi10090619. Micromachines (Basel). 2019. PMID: 31533261 Free PMC article. Review.
Cited by
-
Flexible Semiconductor Technologies with Nanoholes-Provided High Areal Coverages and Their Application in Plasmonic-Enhanced Thin Film Photovoltaics.Sci Rep. 2017 Oct 13;7(1):13155. doi: 10.1038/s41598-017-13655-y. Sci Rep. 2017. PMID: 29030604 Free PMC article.
-
Surface-Plasmon Holography.iScience. 2020 Nov 30;23(12):101879. doi: 10.1016/j.isci.2020.101879. eCollection 2020 Dec 18. iScience. 2020. PMID: 33344922 Free PMC article. Review.
-
Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas.Nat Commun. 2015 Feb 2;6:6150. doi: 10.1038/ncomms7150. Nat Commun. 2015. PMID: 25639190 Free PMC article.
-
Mode Splitting Induced by Mesoscopic Electron Dynamics in Strongly Coupled Metal Nanoparticles on Dielectric Substrates.Nanomaterials (Basel). 2019 Aug 27;9(9):1206. doi: 10.3390/nano9091206. Nanomaterials (Basel). 2019. PMID: 31461966 Free PMC article.
-
Using a Neural Network to Improve the Optical Absorption in Halide Perovskite Layers Containing Core-Shells Silver Nanoparticles.Nanomaterials (Basel). 2019 Mar 15;9(3):437. doi: 10.3390/nano9030437. Nanomaterials (Basel). 2019. PMID: 30875956 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous