Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth
- PMID: 19371750
- DOI: 10.1016/j.jtbi.2009.04.005
Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth
Abstract
We formulate a theoretical model to analyze the vascular remodelling process of an arterio-venous vessel network during solid tumour growth. The model incorporates a hierarchically organized initial vasculature comprising arteries, veins and capillaries, and involves sprouting angiogenesis, vessel cooption, dilation and regression as well as tumour cell proliferation and death. The emerging tumour vasculature is non-hierarchical, compartmentalized into well-characterized zones and transports efficiently an injected drug-bolus. It displays a complex geometry with necrotic zones and "hot spots" of increased vascular density and blood flow of varying size. The corresponding cluster size distribution is algebraic, reminiscent of a self-organized critical state. The intra-tumour vascular-density fluctuations correlate with pressure drops in the initial vasculature suggesting a physical mechanism underlying hot spot formation.
Similar articles
-
Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.J Theor Biol. 2011 Jun 21;279(1):90-101. doi: 10.1016/j.jtbi.2011.02.017. Epub 2011 Mar 12. J Theor Biol. 2011. PMID: 21392511
-
Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.Bull Math Biol. 2002 Jul;64(4):673-702. doi: 10.1006/bulm.2002.0293. Bull Math Biol. 2002. PMID: 12216417
-
Physical determinants of vascular network remodeling during tumor growth.Eur Phys J E Soft Matter. 2010 Oct;33(2):149-63. doi: 10.1140/epje/i2010-10611-6. Epub 2010 Jul 6. Eur Phys J E Soft Matter. 2010. PMID: 20607341
-
Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply.Adv Exp Med Biol. 2016;936:31-72. doi: 10.1007/978-3-319-42023-3_3. Adv Exp Med Biol. 2016. PMID: 27739042 Review.
-
Mathematical modelling, simulation and prediction of tumour-induced angiogenesis.Invasion Metastasis. 1996;16(4-5):222-34. Invasion Metastasis. 1996. PMID: 9311387 Review.
Cited by
-
In vivo detection of tumor boundary using ultrahigh-resolution optical coherence angiography and fluorescence imaging.J Biophotonics. 2020 Mar;13(3):e201960091. doi: 10.1002/jbio.201960091. Epub 2019 Dec 23. J Biophotonics. 2020. PMID: 31778294 Free PMC article.
-
The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.J Theor Biol. 2014 Aug 21;355:194-207. doi: 10.1016/j.jtbi.2014.04.012. Epub 2014 Apr 19. J Theor Biol. 2014. PMID: 24751927 Free PMC article.
-
Flow-correlated dilution of a regular network leads to a percolating network during tumor-induced angiogenesis.Eur Phys J E Soft Matter. 2009 Sep;30(1):101-14. doi: 10.1140/epje/i2009-10513-8. Epub 2009 Sep 24. Eur Phys J E Soft Matter. 2009. PMID: 19777279
-
Computational modeling of PET tracer distribution in solid tumors integrating microvasculature.BMC Biotechnol. 2021 Nov 25;21(1):67. doi: 10.1186/s12896-021-00725-3. BMC Biotechnol. 2021. PMID: 34823506 Free PMC article.
-
CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis.Int J Mol Sci. 2024 Apr 25;25(9):4679. doi: 10.3390/ijms25094679. Int J Mol Sci. 2024. PMID: 38731899 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources