Strengthening materials by engineering coherent internal boundaries at the nanoscale
- PMID: 19372422
- DOI: 10.1126/science.1159610
Strengthening materials by engineering coherent internal boundaries at the nanoscale
Abstract
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
Similar articles
-
Ultrahigh strength and high electrical conductivity in copper.Science. 2004 Apr 16;304(5669):422-6. doi: 10.1126/science.1092905. Epub 2004 Mar 18. Science. 2004. PMID: 15031435
-
Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels.Sci Rep. 2016 Oct 14;6:35345. doi: 10.1038/srep35345. Sci Rep. 2016. PMID: 27739481 Free PMC article.
-
Nanoscale coherent interface strengthening of Mg alloys.Nanoscale. 2018 Sep 27;10(37):18028-18035. doi: 10.1039/c8nr04805c. Nanoscale. 2018. PMID: 30229782
-
Mechanical biocompatibilities of titanium alloys for biomedical applications.J Mech Behav Biomed Mater. 2008 Jan;1(1):30-42. doi: 10.1016/j.jmbbm.2007.07.001. Epub 2007 Aug 27. J Mech Behav Biomed Mater. 2008. PMID: 19627769 Review.
-
Carbon nanotubes in scaffolds for tissue engineering.Expert Rev Med Devices. 2009 Sep;6(5):499-505. doi: 10.1586/erd.09.29. Expert Rev Med Devices. 2009. PMID: 19751122 Review.
Cited by
-
Hot Tensile Deformation Mechanism and Fracture Behavior of the ZW31/PMMC Laminate.Materials (Basel). 2023 Nov 30;16(23):7446. doi: 10.3390/ma16237446. Materials (Basel). 2023. PMID: 38068190 Free PMC article.
-
Maximum strength and dislocation patterning in multi-principal element alloys.Sci Adv. 2022 Nov 11;8(45):eabq7433. doi: 10.1126/sciadv.abq7433. Epub 2022 Nov 9. Sci Adv. 2022. PMID: 36351027 Free PMC article.
-
Trifunctional nanoprecipitates ductilize and toughen a strong laminated metastable titanium alloy.Nat Commun. 2023 Mar 13;14(1):1397. doi: 10.1038/s41467-023-37155-y. Nat Commun. 2023. PMID: 36914678 Free PMC article.
-
Nanoprecipitate-Strengthened High-Entropy Alloys.Adv Sci (Weinh). 2021 Dec;8(23):e2100870. doi: 10.1002/advs.202100870. Epub 2021 Oct 22. Adv Sci (Weinh). 2021. PMID: 34677914 Free PMC article. Review.
-
Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite.Nat Commun. 2021 Aug 4;12(1):4701. doi: 10.1038/s41467-021-25036-1. Nat Commun. 2021. PMID: 34349119 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources