Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;30(16):2602-8.
doi: 10.1002/jcc.21269.

Linear response theory in dihedral angle space for protein structural change upon ligand binding

Affiliations

Linear response theory in dihedral angle space for protein structural change upon ligand binding

Satoshi Omori et al. J Comput Chem. 2009 Dec.

Abstract

Coupling between proteins motion and ligand binding can be well explained by the linear response theory (Ikeguchi, M.; Ueno, J.; Sato, M.; Kidera, A. Phys Rev Lett 2005, 94, 078102.), in which the structural change is treated as a response to ligand binding. The prediction accuracy of structural change upon ligand binding has been improved by replacing the variables in the linear response theory from Cartesian coordinates to dihedral angles. The dihedral angle theory can more accurately describe the rotational motions of protein domains compared with the Cartesian theory, which tends to shift the coordinate to the tangential direction of the domain rotation. In this study, the ligand-bound form of Ferric-binding protein was predicted from its ligand-free form using the dihedral linear response theory. When the variance-covariance matrix, the key component in the linear response theory, was derived by linear conversion from Cartesian coordinates to dihedral angles, the dihedral linear response theory gave an improvement in the prediction. Therefore, the description of the rotational motion by dihedral angles is crucial for accurate prediction of protein structural change.

PubMed Disclaimer

Publication types

LinkOut - more resources