Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Mar 15;606(1-3):142-9.
doi: 10.1016/j.ejphar.2009.01.033. Epub 2009 Jan 29.

Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats

Affiliations

Ginsenoside-Rd, a new voltage-independent Ca2+ entry blocker, reverses basilar hypertrophic remodeling in stroke-prone renovascular hypertensive rats

Bing-Xiang Cai et al. Eur J Pharmacol. .

Abstract

The total saponins of Panax notoginseng have been clinically used for the treatment of cardiovascular diseases and stroke in China. Our recent study has identified ginsenoside-Rd, a purified component of total saponins of P. notoginseng, as an inhibitor to remarkably inhibit voltage-independent Ca(2+) entry. We deduced a hypothesis that the inhibition of voltage-independent Ca(2+) entry might contribute to its cerebrovascular benefits. Ginsenoside-Rd was administered to two-kidney, two-clip (2k2c) stroke-prone hypertensive rats to examine its effects on blood pressure, cerebrovascular remodeling and Ca(2+) entry in freshly isolated basilar arterial vascular smooth muscle cells (BAVSMCs). Its effects on endothelin-1 induced Ca(2+) entry and cellular proliferation were assessed in cultured BAVSMCs. The results showed that, in vivo, ginsenoside-Rd treatment attenuated basilar hypertrophic inward remodeling in 2k2c hypertensive rats without affecting systemic blood pressure.During the development of hypertension, there were time-dependent increases in receptor-operated Ca(2+) channel (ROCC)-, store-operated Ca(2+) channel (SOCC)- and voltage dependent Ca(2+) channel (VDCC)-mediated Ca(2+) entries in freshly isolated BAVSMCs. Ginsenoside-Rd reversed the increase in SOCC- or ROCC- but not VDCC-mediated Ca(2+) entry. In vitro, ginsenoside-Rd concentration-dependently inhibited endothelin-1 induced BAVSMC proliferation and Mn(2+) quenching rate within the same concentration range as required for inhibition of increased SOCC- or ROCC-mediated Ca(2+) entries during hypertension. These results provide in vivo evidence showing attenuation of hypertensive cerebrovascular remodeling after ginsenoside-Rd treatment. The underlying mechanism might be associated with inhibitory effects of ginsenoside-Rd on voltage-independent Ca(2+) entry and BAVSMC proliferation, but not with VDCC-mediated Ca(2+) entry.

PubMed Disclaimer

Publication types

MeSH terms