Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May;67(5):973-85.
doi: 10.1016/j.joms.2008.12.032.

Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures

Affiliations

Biomechanical optimization of bone plates used in rigid fixation of mandibular fractures

Scott T Lovald et al. J Oral Maxillofac Surg. 2009 May.

Abstract

Purpose: To design and optimize a bone plate for fractures of the mandibular body that will provide maximum fracture stability with minimal implanted volume and patient intrusion. The design will be driven by the unique biomechanics specific to this fracture location.

Materials and methods: A finite element model of a fractured human mandible was created using tomography scans. Material properties were assigned to the cortical bone, cancellous bone, and dental region. Boundary conditions included simulating a unilateral molar clench and incisal loading. The bone plate design process included a shape optimization routine and design parameter analysis using the model. The optimized bone plate design was finally compared with standard bone plate configurations based on stress and strain measures.

Results: For incisal loading, the newly designed InterFlex II plate has 69% of the fracture strain and only 34% of the plate stress of an 8-hole strut plate. For unilateral molar loading, those numbers improve even further to 59% and 27%, respectively. InterFlex II plate stresses are less than or equal to the paired plate configuration, and fracture strain is within 10% of the corresponding paired plate strain under both loading scenarios. In terms of mechanical performance, InterFlex II is in the same class as the commonly used paired plate configuration, despite having only 55% of the implanted volume.

Conclusion: A design process focused on shape and design variable optimization can produce bone plates that provide maximum fracture stability with minimum implanted volume.

PubMed Disclaimer

Publication types

LinkOut - more resources