Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Jun;191(12):4015-24.
doi: 10.1128/JB.01743-08. Epub 2009 Apr 17.

Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets

Affiliations
Comparative Study

Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets

Deok-Sun Lee et al. J Bacteriol. 2009 Jun.

Abstract

Mortality due to multidrug-resistant Staphylococcus aureus infection is predicted to surpass that of human immunodeficiency virus/AIDS in the United States. Despite the various treatment options for S. aureus infections, it remains a major hospital- and community-acquired opportunistic pathogen. With the emergence of multidrug-resistant S. aureus strains, there is an urgent need for the discovery of new antimicrobial drug targets in the organism. To this end, we reconstructed the metabolic networks of multidrug-resistant S. aureus strains using genome annotation, functional-pathway analysis, and comparative genomic approaches, followed by flux balance analysis-based in silico single and double gene deletion experiments. We identified 70 single enzymes and 54 pairs of enzymes whose corresponding metabolic reactions are predicted to be unconditionally essential for growth. Of these, 44 single enzymes and 10 enzyme pairs proved to be common to all 13 S. aureus strains, including many that had not been previously identified as being essential for growth by gene deletion experiments in S. aureus. We thus conclude that metabolic reconstruction and in silico analyses of multiple strains of the same bacterial species provide a novel approach for potential antibiotic target identification.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Single essential and synthetic-lethal enzymes of the S. aureus metabolic network and their strain dependence. (a) Subnetworks of 44 strain-independent single essential enzymes of multiple S. aureus strains. Two nodes (enzymes) are connected if their reactions involve common metabolites. The EC number and the associated genes are presented for each node. The node colors correspond to the metabolic pathways the enzymes belong to. (b) Subset of the amino sugar pathway involving two single essential enzymes, EC 2.5.1.7 and EC1.1.1.158. Three pairs of enzymes, EC 2.3.1.157-EC 5.1.3.14, EC 2.7.7.23-EC 5.1.3.14, and EC 5.4.2.10-EC 5.1.3.14, are synthetic-lethal pairs in all strains. The enzymes in each pair individually do not affect growth (biomass production), but their simultaneous inactivation/deletion causes lethality. (c) Distribution of the numbers of strains in which an enzyme is singly essential. Altogether, 70 enzymes were identified as singly essential in at least one strain. Of these, more than 60% are found in all the S. aureus strains. (d) Distribution of the numbers of strains in which the deletion of a pair of enzymes is synthetic lethal. A total of 54 synthetic-lethal pairs were identified in at least one strain. About 40% of them are found only in one strain, reflecting the strain specificity of synthetic-lethal pairs, with less than 20% being present in all the strains.
FIG. 2.
FIG. 2.
Experimental validation of S.aureus growth in metabolic-reconstruction-based minimal medium. Shown are the growth curves of S. aureus Mu50 (a), S. aureus USA300 (b), and an S. aureus patient isolate (c). AAM is a modified minimal medium derived from metabolic reconstruction; AAM+ is a published minimal medium (27).

Similar articles

Cited by

References

    1. Almaas, E., B. Kovacs, T. Vicsek, Z. N. Oltvai, and A.-L. Barabási. 2004. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427839-843. - PubMed
    1. Almaas, E., Z. N. Oltvai, and A.-L. Barabási. 2005. The activity reaction core and plasticity of metabolic networks. PLoS Comp. Biol. 10557-0563. - PMC - PubMed
    1. Baba, T., T. Bae, O. Schneewind, F. Takeuchi, and K. Hiramatsu. 2008. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J. Bacteriol. 190300-310. - PMC - PubMed
    1. Becker, S. A., and B. O. Palsson. 2005. Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two dimensional annotation. BMC Microbiol. 58-20. - PMC - PubMed
    1. Bhattacharyya, A., S. Stilwagen, G. Reznik, H. Feil, W. Feil, I. Anderson, A. Bernal, M. D' Souza, N. Ivanova, V. Kapatral, N. Larsen, T. Los, A. Lykidis, E. J. Selkov, T. L. Walunas, A. Purcell, R. A. Edwards, T. Hawkins, R. Haselkorn, R. Overbeek, N. C. Kyrpides, and P. Predki. 2002. Draft sequencing and comparative genomics of Xylella fastidiosa subspecies reveal novel biological insights. Genome Res. 121556-1563. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources