Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression
- PMID: 19376920
- PMCID: PMC2698378
- DOI: 10.1128/AEM.00314-09
Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression
Abstract
The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or peptide sequences of the secreted proteins. Under nitrogen or carbon limitation, lignin and manganese peroxidase expression increased relative to nutrient replete medium. Various extracellular oxidases were also secreted in these media, supporting a physiological connection based on peroxide generation. Numerous genes presumed to be involved in mobilizing and recycling nitrogen were expressed under nitrogen limitation, and among these were several secreted glutamic acid proteases not previously observed. In medium containing microcrystalline cellulose as the sole carbon source, numerous genes encoding carbohydrate-active enzymes were upregulated. Among these were six members of the glycoside hydrolase family 61, as well as several polysaccharide lyases and carbohydrate esterases. Presenting a daunting challenge for future research, more than 190 upregulated genes are predicted to encode proteins of unknown function. Of these hypothetical proteins, approximately one-third featured predicted secretion signals, and 54 encoded proteins detected in extracellular filtrates. Our results affirm the importance of certain oxidative enzymes and, underscoring the complexity of lignocellulose degradation, also support an important role for many new proteins of unknown function.
Figures




Similar articles
-
Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.Appl Environ Microbiol. 2010 Jun;76(11):3599-610. doi: 10.1128/AEM.00058-10. Epub 2010 Apr 16. Appl Environ Microbiol. 2010. PMID: 20400566 Free PMC article.
-
Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins.Fungal Genet Biol. 2006 May;43(5):343-56. doi: 10.1016/j.fgb.2006.01.003. Epub 2006 Mar 9. Fungal Genet Biol. 2006. PMID: 16524749
-
Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation.Appl Environ Microbiol. 2008 Dec;74(23):7252-7. doi: 10.1128/AEM.01997-08. Epub 2008 Oct 10. Appl Environ Microbiol. 2008. PMID: 18849459 Free PMC article.
-
Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium.Fungal Genet Biol. 2007 Feb;44(2):77-87. doi: 10.1016/j.fgb.2006.07.007. Epub 2006 Sep 12. Fungal Genet Biol. 2007. PMID: 16971147 Review.
-
Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete.Appl Microbiol Biotechnol. 2012 Apr;94(2):339-51. doi: 10.1007/s00253-012-3937-z. Epub 2012 Mar 6. Appl Microbiol Biotechnol. 2012. PMID: 22391967 Review.
Cited by
-
Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi.Appl Environ Microbiol. 2013 Apr;79(8):2560-71. doi: 10.1128/AEM.03182-12. Epub 2013 Feb 8. Appl Environ Microbiol. 2013. PMID: 23396333 Free PMC article.
-
Gene Expression Patterns of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium Are Influenced by Wood Substrate Composition during Degradation.Appl Environ Microbiol. 2016 Jun 30;82(14):4387-4400. doi: 10.1128/AEM.00134-16. Print 2016 Jul 15. Appl Environ Microbiol. 2016. PMID: 27208101 Free PMC article.
-
Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass.Microbiol Mol Biol Rev. 2018 Sep 26;82(4):e00029-18. doi: 10.1128/MMBR.00029-18. Print 2018 Dec. Microbiol Mol Biol Rev. 2018. PMID: 30257993 Free PMC article. Review.
-
Induction of Genes Encoding Plant Cell Wall-Degrading Carbohydrate-Active Enzymes by Lignocellulose-Derived Monosaccharides and Cellobiose in the White-Rot Fungus Dichomitus squalens.Appl Environ Microbiol. 2018 May 17;84(11):e00403-18. doi: 10.1128/AEM.00403-18. Print 2018 Jun 1. Appl Environ Microbiol. 2018. PMID: 29572208 Free PMC article.
-
Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.BMC Microbiol. 2017 May 30;17(1):129. doi: 10.1186/s12866-017-1028-0. BMC Microbiol. 2017. PMID: 28558650 Free PMC article.
References
-
- Abbas, A., H. Koc, F. Liu, and M. Tien. 2004. Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet. 47:49-56. - PubMed
-
- Bao, W., E. Lymar, and V. Renganathan. 1994. Optimization of cellobiose dehydrogenase and β-glucosidase production by cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 42:642-646.
-
- Benjdia, M., E. Rikirsch, T. Muller, M. Morel, C. Corratge, S. Zimmermann, M. Chalot, W. B. Frommer, and D. Wipf. 2006. Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol. 170:401-410. - PubMed
-
- Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron. 2001. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet. 29:365-371. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases