Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991 Mar;57(1-2):1-17.
doi: 10.3109/00207459109150342.

Oxygen free radicals and brain dysfunction

Affiliations
Review

Oxygen free radicals and brain dysfunction

J A Jesberger et al. Int J Neurosci. 1991 Mar.

Abstract

Oxygen free radicals, any chemical moiety containing an oxygen atom with an unpaired electron in the outer orbital shell, are generated during many normal biochemical reactions in living tissue. The unpaired electron makes these compounds highly reactive and they can initiate disruptive peroxidation reactions with various substrates important to the survival of cells such as proteins, lipids and nucleic acids. A fairly complex defense system has evolved to protect living tissue from free radicals and to minimize the damage they might cause. Neurons are especially vulnerable to free radical attack and impaired defenses or exposure to excess free radicals can lead to neuronal death. Free radicals contribute to neuronal loss in cerebral ischemia and hemorrhage and may be involved in the degeneration of neurons in epilepsy, schizophrenia, tardive dyskinesia, normal aging, Parkinson's Disease and Alzheimer's Disease. The development of drugs that limit or prevent the attack of free radicals on neurons would be an important advance in the treatment of these conditions.

PubMed Disclaimer

Comment in

Similar articles

Cited by

LinkOut - more resources