The Fip35 WW domain folds with structural and mechanistic heterogeneity in molecular dynamics simulations
- PMID: 19383445
- PMCID: PMC2718323
- DOI: 10.1016/j.bpj.2009.01.024
The Fip35 WW domain folds with structural and mechanistic heterogeneity in molecular dynamics simulations
Abstract
We describe molecular dynamics simulations resulting in the folding the Fip35 Hpin1 WW domain. The simulations were run on a distributed set of graphics processors, which are capable of providing up to two orders of magnitude faster computation than conventional processors. Using the Folding@home distributed computing system, we generated thousands of independent trajectories in an implicit solvent model, totaling over 2.73 ms of simulations. A small number of these trajectories folded; the folding proceeded along several distinct routes and the system folded into two distinct three-stranded beta-sheet conformations, showing that the folding mechanism of this system is distinctly heterogeneous.
Figures


Similar articles
-
Beta-hairpin folding simulations in atomistic detail using an implicit solvent model.J Mol Biol. 2001 Oct 12;313(1):151-69. doi: 10.1006/jmbi.2001.5033. J Mol Biol. 2001. PMID: 11601853
-
Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation.FEBS Lett. 2017 Oct;591(20):3265-3275. doi: 10.1002/1873-3468.12836. Epub 2017 Sep 21. FEBS Lett. 2017. PMID: 28881468 Free PMC article.
-
The ensemble folding kinetics of the FBP28 WW domain revealed by an all-atom Monte Carlo simulation in a knowledge-based potential.Proteins. 2011 Jun;79(6):1704-14. doi: 10.1002/prot.22993. Epub 2011 Mar 1. Proteins. 2011. PMID: 21365688 Free PMC article.
-
Computational design and experimental testing of the fastest-folding β-sheet protein.J Mol Biol. 2011 Jan 7;405(1):43-8. doi: 10.1016/j.jmb.2010.10.023. Epub 2010 Oct 23. J Mol Biol. 2011. PMID: 20974152 Review.
-
Protein and peptide folding explored with molecular simulations.Acc Chem Res. 2002 Jun;35(6):447-54. doi: 10.1021/ar0100172. Acc Chem Res. 2002. PMID: 12069630 Review.
Cited by
-
The future of molecular dynamics simulations in drug discovery.J Comput Aided Mol Des. 2012 Jan;26(1):15-26. doi: 10.1007/s10822-011-9517-y. Epub 2011 Dec 20. J Comput Aided Mol Des. 2012. PMID: 22183577 Free PMC article.
-
Accelerated molecular dynamics simulations of protein folding.J Comput Chem. 2015 Jul 30;36(20):1536-49. doi: 10.1002/jcc.23964. Epub 2015 Jun 12. J Comput Chem. 2015. PMID: 26096263 Free PMC article.
-
Biomolecularmodeling and simulation: a field coming of age.Q Rev Biophys. 2011 May;44(2):191-228. doi: 10.1017/S0033583510000284. Q Rev Biophys. 2011. PMID: 21226976 Free PMC article. Review.
-
High-Resolution Mapping of the Folding Transition State of a WW Domain.J Mol Biol. 2016 Apr 24;428(8):1617-36. doi: 10.1016/j.jmb.2016.02.008. Epub 2016 Feb 12. J Mol Biol. 2016. PMID: 26880334 Free PMC article.
-
The Role of Electrostatic Interactions in Folding of β-Proteins.J Am Chem Soc. 2016 Feb 3;138(4):1456-64. doi: 10.1021/jacs.5b13201. Epub 2016 Jan 20. J Am Chem Soc. 2016. PMID: 26750867 Free PMC article.
References
-
- Borrell B. Power Play. Nature. 2008;451:240–243. - PubMed
-
- Hess B., Kutzner C., van der Spoel D., Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008;4:435–447. - PubMed
-
- Shirts M., Pande V.S. Computing - Screen savers of the world unite! Science. 2000;290:1903–1904. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources