FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy
- PMID: 19383939
- PMCID: PMC2675802
- DOI: 10.1242/dmm.002261
FSHD region gene 1 (FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy
Abstract
The genetic lesion that is diagnostic for facioscapulohumeral muscular dystrophy (FSHD) results in an epigenetic misregulation of gene expression, which ultimately leads to the disease pathology. FRG1 (FSHD region gene 1) is a leading candidate for a gene whose misexpression might lead to FSHD. Because FSHD pathology is most prominent in the musculature, most research and therapy efforts focus on muscle cells. Previously, using Xenopus development as a model, we showed that altering frg1 expression levels systemically leads to aberrant muscle development, illustrating the potential for aberrant FRG1 levels to disrupt the musculature. However, 50-75% of FSHD patients also exhibit retinal vasculopathy and FSHD muscles have increased levels of vascular- and endothelial-related FRG1 transcripts, illustrating an underlying vascular component to the disease. To date, no FSHD candidate gene has been proposed to affect the vasculature. Here, we focus on a role for FRG1 expression in the vasculature. We found that endogenous frg1 is expressed in both the developing and adult vasculature in Xenopus. Furthermore, expression of FRG1 was found to be essential for the development of the vasculature, as a knockdown of FRG1 resulted in decreased angiogenesis and reduced expression of the angiogenic regulator DAB2. Conversely, tadpoles subjected to frg1 overexpression displayed the pro-angiogenic phenotypes of increased blood vessel branching and dilation of blood vessels, and developed edemas, suggesting that their circulation was disrupted. Thus, the systemic upregulation of the FRG1 protein shows the potential for acquiring a disrupted vascular phenotype, providing the first link between a FSHD candidate gene and the vascular component of FSHD pathology. Overall, in conjunction with our previous analysis, we show that FRG1 overexpression is capable of disrupting both the musculature and vasculature, recapitulating the two most prominent features of FSHD.
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                References
- 
    - Christie K.N., Thomson C. (1989). Bandeiraea simplicifolia lectin demonstrates significantly more capillaries in rat skeletal muscle than enzyme methods. J. Histochem. Cytochem. 37, 1303–1304 - PubMed
 
- 
    - Devic E., Paquereau L., Vernier P., Knibiehler B., Audigier Y. (1996). Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech. Dev. 59, 129–140 - PubMed
 
- 
    - Fazili Z., Sun W., Mittelstaedt S., Cohen C., Xu X.X. (1999). Disabled-2 inactivation is an early step in ovarian tumorigenicity. Oncogene 18, 3104–3113 - PubMed
 
- 
    - Fitzsimons R.B., Gurwin E.B., Bird A.C. (1987). Retinal vascular abnormalities in facioscapulohumeral muscular dystrophy: a general association with genetic and therapeutic implications. Brain 110, 631–648 - PubMed
 
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Medical
- Molecular Biology Databases
 
        