Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2009 Jun;19(6):458-63.
doi: 10.1097/FPC.0b013e32832bd085.

CYP3A5*1/*3 genotype influences the blood concentration of tacrolimus in response to metabolic inhibition by ketoconazole

Affiliations
Clinical Trial

CYP3A5*1/*3 genotype influences the blood concentration of tacrolimus in response to metabolic inhibition by ketoconazole

Nirupama Chandel et al. Pharmacogenet Genomics. 2009 Jun.

Abstract

Objectives: Ketoconazole retards metabolic degradation of tacrolimus through its effect on the cytochrome P-450 enzyme system and allows reduction in treatment costs. Enzyme activity is determined by a single nucleotide polymorphism (*1/*3) in the CYP3A5 gene.

Methods: We prospectively investigated the impact of this polymorphism on tacrolimus concentration in a cohort of 79 renal transplant recipients on ketoconazole. Genotyping was carried out by using polymerase chain reaction-restriction fragment length polymorphism technique. Dose-adjusted trough level (C0) was calculated at baseline and at 3, 7, 15, 30, and 60 days.

Results: The baseline C0 was significantly lower in those with at least one *1 allele [44.95+/-14.12 vs. 63.43+/-14.72 (ng/ml)/(mg/kg/day), P<0.0001]. After starting ketoconazole in all genotypes, dose-normalized C0 increased and the cost of therapy decreased. Compared with baseline, the magnitude of increase was 112% and 79% in those without and with *1 allele, respectively (P<0.001). The cost savings were 32% and 39% in mycophenolate mofetil-treated and 47% and 61% in azathioprine-treated patients who were with and without one *1 allele, respectively.

Conclusion: We show that the CYP3A5*1/*3 polymorphism is an important determinant of the response to inhibition of tacrolimus metabolism by ketoconazole, with a 30% greater inhibition in those lacking *1 allele. This finding will allow better dose adjustment and minimize exposure to subtherapeutic or toxic concentrations.

PubMed Disclaimer

Publication types

LinkOut - more resources