Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks
- PMID: 19384444
- DOI: 10.1039/b807086p
Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks
Abstract
This critical review highlights supermolecular building blocks (SBBs) in the context of their impact upon the design, synthesis, and structure of metal-organic materials (MOMs). MOMs, also known as coordination polymers, hybrid inorganic-organic materials, and metal-organic frameworks, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOMs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. First generation MOMs exploited the geometry of metal ions or secondary building units (SBUs), small metal clusters that mimic polygons, for the generation of MOMs. In this critical review we examine the recent (<5 years) adoption of much larger scale metal-organic polyhedra (MOPs) as SBBs for the construction of MOMs by highlighting how the large size and high symmetry of such SBBs can afford improved control over the topology of the resulting MOM and a new level of scale to the resulting framework (204 references).
Similar articles
-
Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks.Chem Commun (Camb). 2009 Jun 21;(23):3326-41. doi: 10.1039/b902988e. Epub 2009 Apr 28. Chem Commun (Camb). 2009. PMID: 19503863
-
Secondary building units, nets and bonding in the chemistry of metal-organic frameworks.Chem Soc Rev. 2009 May;38(5):1257-83. doi: 10.1039/b817735j. Epub 2009 Mar 31. Chem Soc Rev. 2009. PMID: 19384437
-
Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra.J Am Chem Soc. 2008 Sep 3;130(35):11650-61. doi: 10.1021/ja803783c. Epub 2008 Aug 9. J Am Chem Soc. 2008. PMID: 18693690
-
Small organic molecule templating synthesis of organic-inorganic hybrid materials: their nanostructures and properties.Nanoscale. 2010 Mar;2(3):323-34. doi: 10.1039/b9nr00192a. Epub 2009 Dec 1. Nanoscale. 2010. PMID: 20644814 Review.
-
Reticular chemistry of metal-organic polyhedra.Angew Chem Int Ed Engl. 2008;47(28):5136-47. doi: 10.1002/anie.200705008. Angew Chem Int Ed Engl. 2008. PMID: 18528833 Review.
Cited by
-
Synthesis and Biomedical Applications of Highly Porous Metal-Organic Frameworks.Molecules. 2022 Oct 5;27(19):6585. doi: 10.3390/molecules27196585. Molecules. 2022. PMID: 36235122 Free PMC article. Review.
-
A Porous Metal-Organic Framework Assembled by [Cu30] Nanocages: Serving as Recyclable Catalysts for CO2 Fixation with Aziridines.Adv Sci (Weinh). 2016 May 17;3(11):1600048. doi: 10.1002/advs.201600048. eCollection 2016 Nov. Adv Sci (Weinh). 2016. PMID: 27980985 Free PMC article.
-
Metal-organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials.Sci Technol Adv Mater. 2015 Oct 6;16(5):054204. doi: 10.1088/1468-6996/16/5/054204. eCollection 2015 Oct. Sci Technol Adv Mater. 2015. PMID: 27877833 Free PMC article.
-
One-step ethylene production from a four-component gas mixture by a single physisorbent.Nat Commun. 2021 Nov 11;12(1):6507. doi: 10.1038/s41467-021-26473-8. Nat Commun. 2021. PMID: 34764243 Free PMC article.
-
Highly Productive C3H4/C3H6 Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material.J Am Chem Soc. 2023 May 31;145(21):11837-11845. doi: 10.1021/jacs.3c03505. Epub 2023 May 19. J Am Chem Soc. 2023. PMID: 37204941 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources