Pericytes display increased CCN2 expression upon culturing
- PMID: 19384472
- PMCID: PMC2686756
- DOI: 10.1007/s12079-009-0053-7
Pericytes display increased CCN2 expression upon culturing
Abstract
By providing a source of alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblasts, microvascular pericytes contribute to the matrix remodeling that occurs during tissue repair. However, the extent to which pericytes may contribute to the fibroblast phenotype post-repair is unknown. In this report, we test whether pericytes isolated from human placenta can in principle become fibroblast-like. Pericytes were cultured in vitro for 11 passages. The Affymetrix mRNA expression profile of passage 2 and passage 11 pericytes was compared. The expression of type I collagen, thrombospondin and fibronectin mRNAs was induced by passaging pericytes in culture. This induction of a fibroblast phenotype was paralleled by induction of connective tissue growth factor (CTGF/CCN2) and type I collagen protein expression and the fibroblast marker ASO2. These results indicate that, in principle, pericytes have the capacity to become fibroblast-like and that pericytes may contribute to the population of fibroblasts in a healed wound.
Figures


Similar articles
-
Connective tissue growth factor is induced in bleomycin-induced skin scleroderma.J Cell Commun Signal. 2010 Mar;4(1):25-30. doi: 10.1007/s12079-009-0081-3. Epub 2009 Nov 15. J Cell Commun Signal. 2010. PMID: 19916059 Free PMC article.
-
Connective tissue growth factor promoter activity in normal and wounded skin.Fibrogenesis Tissue Repair. 2008 Oct 13;1(1):3. doi: 10.1186/1755-1536-1-3. Fibrogenesis Tissue Repair. 2008. PMID: 19014648 Free PMC article.
-
Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1.Am J Pathol. 1994 Feb;144(2):372-82. Am J Pathol. 1994. PMID: 8311120 Free PMC article.
-
Fibroblast adhesion results in the induction of a matrix remodeling gene expression program.Matrix Biol. 2008 May;27(4):274-81. doi: 10.1016/j.matbio.2008.01.004. Epub 2008 Jan 26. Matrix Biol. 2008. PMID: 18291634
-
Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor β-dependent mesenchymal-to-mesenchymal transition.Arthritis Rheum. 2013 Jan;65(1):258-69. doi: 10.1002/art.37705. Arthritis Rheum. 2013. PMID: 22972461
Cited by
-
FoxD1-driven CCN2 deletion causes axial skeletal deformities, pulmonary hypoplasia, and neonatal asphyctic death.J Cell Commun Signal. 2019 Dec;13(4):573-577. doi: 10.1007/s12079-020-00549-4. Epub 2020 Feb 4. J Cell Commun Signal. 2019. PMID: 32020419 Free PMC article.
-
Correction to: FoxD1-driven CCN2 deletion causes axial skeletal deformities, pulmonary hypoplasia, and neonatal asphyctic death.J Cell Commun Signal. 2020 Mar;14(1):47-52. doi: 10.1007/s12079-020-00559-2. J Cell Commun Signal. 2020. PMID: 32291573 Free PMC article.
-
CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators.FASEB J. 2012 Aug;26(8):3365-79. doi: 10.1096/fj.11-200154. Epub 2012 May 18. FASEB J. 2012. PMID: 22611085 Free PMC article.
-
Stromal cells differentially regulate neutrophil and lymphocyte recruitment through the endothelium.Immunology. 2010 Nov;131(3):357-70. doi: 10.1111/j.1365-2567.2010.03307.x. Immunology. 2010. PMID: 20518822 Free PMC article.
-
Recombinant expression, purification, and functional characterisation of connective tissue growth factor and nephroblastoma-overexpressed protein.PLoS One. 2010 Dec 30;5(12):e16000. doi: 10.1371/journal.pone.0016000. PLoS One. 2010. PMID: 21209863 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s11926-007-0008-z', 'is_inner': False, 'url': 'https://doi.org/10.1007/s11926-007-0008-z'}, {'type': 'PubMed', 'value': '17502044', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17502044/'}]}
- Abraham DJ, Eckes B, Rajkumar V, Krieg T (2007) New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 9:136–143. doi:10.1007/s11926-007-0008-z - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1613194', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1613194/'}, {'type': 'PubMed', 'value': '16314481', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16314481/'}]}
- Chen Y, Shi-Wen X, van Beek J, Kennedy L, McLeod M, Renzoni EA, Bou-Gharios G, Wilcox-Adelman S, Goetinck PF, Eastwood M, Black CM, Abraham DJ, Leask A (2005) Matrix contraction by dermal fibroblasts requires transforming growth factor-beta/activin-linked kinase 5, heparan sulfate-containing proteoglycans, and MEK/ERK: insights into pathological scarring in chronic fibrotic disease. Am J Pathol 67:1699–1711 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.copbio.2003.08.006', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.copbio.2003.08.006'}, {'type': 'PubMed', 'value': '14580586', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/14580586/'}]}
- Hinz B, Gabbiani G (2003) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14:538–546. doi:10.1016/j.copbio.2003.08.006 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1006/excr.1996.0379', 'is_inner': False, 'url': 'https://doi.org/10.1006/excr.1996.0379'}, {'type': 'PubMed', 'value': '8986617', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8986617/'}]}
- Ivarsson M, Sundberg C, Farrokhnia N, Pertoft H, Rubin K, Gerdin B (1996) Recruitment of type I collagen producing cells from the microvasculature in vitro. Exp Cell Res 229:336–349. doi:10.1006/excr.1996.0379 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1186/1755-1536-1-3', 'is_inner': False, 'url': 'https://doi.org/10.1186/1755-1536-1-3'}, {'type': 'PMC', 'value': 'PMC2584011', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC2584011/'}, {'type': 'PubMed', 'value': '19014648', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/19014648/'}]}
- Kapoor M, Liu S, Huh K, Parapuram S, Kennedy L, Leask A (2008) Connective tissue growth factor promoter activity in normal and wounded skin. Fibrogenesis Tissue Repair 1:3. doi:10.1186/1755-1536-1-3 - PMC - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous