Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1977 Jun;59(6):1045-54.
doi: 10.1172/JCI108727.

The storage lipids in Tangier disease. A physical chemical study

Case Reports

The storage lipids in Tangier disease. A physical chemical study

S S Katz et al. J Clin Invest. 1977 Jun.

Abstract

The physical states and phase behavior of the lipids of the spleen, liver, and splenic artery from a 38-yr-old man with Tangier disease were studied. Many intracellular lipid droplets in the smectic liquid crystalline state were identified by polarizing microscopy in macrophages in both the spleen and liver, but not in the splenic artery. The droplets within individual cells melted sharply over a narrow temperature range, indicating a uniform lipid composition of the droplets of each cell. However different cells melted over a wide range, 20-53 degrees C indicating heterogeneity of lipid droplet composition between cells. Furthermore, most of the cells (81%) had droplets in the liquid crystalline state at 37 degrees C. X-ray diffraction studies of splenic tissue at 37 degrees C revealed a diffraction pattern typical of cholesterol esters in the smectic liquid crystalline state. Differential scanning calorimetry of spleen showed a broad reversible transition from 29-52 degrees C, with a maximum mean transition temperature at 42 degrees C, correlating closely with the polarizing microscopy observations. The enthalpy of the transition, 0.86+/-0.07 cal/g of cholesterol ester, was quantitatively similar to that of the liquid crystalline to liquid transition of pure cholesterol esters indicating that nearly all of the cholesterol esters in the tissue were free to undergo the smectic-isotropic phase transition. Lipid compositions of spleen and liver were determined, and when plotted on the cholesterol-phospholipid-cholesterol ester phase diagram, fell within the two phase zone. The two phases, cholesterol ester droplets and phospholipid bilayers were isolated by ultracentrifugation of tissue homogenates. Lipid compositions of the separated phases approximated those predicted by the phase diagram. Extracted lipids from the spleen, when dispersed in water and ultracentrifuged, underwent phase separation in a similar way. Thus (a) most of the storage lipids in the liver and spleen of this patient were in the liquid crystalline state at body temperature, (b) the phase behavior of the storage lipids conformed to that predicted by lipid model systems indicating lipid-lipid interactions predominate in affected cells, (c) lipid droplets within individual cells have similar compositions, whereas droplet composition varies from cell to cell, and (d) cholesterol ester does not accumulate in the splenic artery. Since Tangier patients lack high density lipoprotein, we conclude that high density lipoprotein-mediated cholesterol removal from cells is essential only for those cells which have an obligate intake of cholesterol (macrophages).

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biol Chem. 1957 May;226(1):497-509 - PubMed
    1. J Exp Med. 1965 Jan 1;121:153-70 - PubMed
    1. Am J Pathol. 1975 Jan;78(1):101-58 - PubMed
    1. Science. 1975 Oct 24;190(4212):392-4 - PubMed
    1. Biochim Biophys Acta. 1976 May 27;431(2):347-58 - PubMed

Publication types

MeSH terms