Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug;71(2):620-9.
doi: 10.1152/jappl.1991.71.2.620.

Gravity is a minor determinant of pulmonary blood flow distribution

Affiliations

Gravity is a minor determinant of pulmonary blood flow distribution

R W Glenny et al. J Appl Physiol (1985). 1991 Aug.

Abstract

Regional pulmonary blood flow in dogs under zone 3 conditions was measured in supine and prone postures to evaluate the linear gravitational model of perfusion distribution. Flow to regions of lung that were 1.9 cm3 in volume was determined by injection of radiolabeled microspheres in both postures. There was marked perfusion heterogeneity within isogravitational planes (coefficient of variation = 42.5%) as well as within gravitational planes (coefficient of variation = 44.2 and 39.2% in supine and prone postures, respectively; P = 0.02). On average, vertical height explained only 5.8 and 2.4% of the flow variability in the supine and prone postures, respectively. Whereas the gravitational model predicts that regional flows should be negatively correlated when measured in supine and prone postures, flows in the two postures were positively correlated, with an r2 of 0.708 +/- 0.050. Regional perfusion as a function of distance from the center of a lung explained 13.4 and 10.8% of the flow variability in the supine and prone postures, respectively. A linear combination of vertical height and radial distance from the centers of each lung provided a better-fitting model but still explained only 20.0 and 12.0% of the flow variability in the supine and prone postures, respectively. The entire lung was searched for a region of contiguous lung pieces (22.8 cm3) with high flow. Such a region was found in the dorsal area of the lower lobes in six of seven animals, and flow to this region was independent of posture. Under zone 3 conditions, neither gravity nor radial location is the principal determinant of regional perfusion distribution in supine and prone dogs.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources