Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 1;107(4):697-705.
doi: 10.1002/jcb.22170.

Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling

Affiliations

Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling

Zuo-Hui Shao et al. J Cell Biochem. .

Abstract

Ischemia/reperfusion (I/R) injury in cardiomyocytes is related to excess reactive oxygen species (ROS) generation and can be modulated by nitric oxide (NO). We have previously shown that grape seed proanthocyanidin extract (GSPE), a naturally occurring antioxidant, decreased ROS and may potentially stimulate NO production. In this study, we investigated whether GSPE administration at reperfusion was associated with cardioprotection and enhanced NO production in a cardiomyocyte I/R model. GSPE attenuated I/R-induced cell death [18.0 +/- 1.8% (GSPE, 50 microg/ml) vs. 42.3 +/- 3.0% (I/R control), P < 0.001], restored contractility (6/6 vs. 0/6, respectively), and increased NO release. The NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 200 microM) significantly reduced GSPE-induced NO release and its associated cardioprotection [32.7 +/- 2.7% (GSPE + L-NAME) vs. 18.0 +/- 1.8% (GSPE alone), P < 0.01]. To determine whether GSPE induced NO production was mediated by the Akt-eNOS pathway, we utilized the Akt inhibitor API-2. API-2 (10 microM) abrogated GSPE-induced protection [44.3% +/- 2.2% (GSPE + API-2) vs. 27.0% +/- 4.3% (GSPE alone), P < 0.01], attenuated the enhanced phosphorylation of Akt at Ser473 in GSPE-treated cells and attenuated GSPE-induced NO increases. Simultaneously blocking NOS activation (L-NAME) and Akt (API-2) resulted in decreased NO levels similar to using each inhibitor independently. These data suggest that in the context of GSPE stimulation, Akt may help activate eNOS, leading to protective levels of NO. GSPE offers an alternative approach to therapeutic cardioprotection against I/R injury and may offer unique opportunities to improve cardiovascular health by enhancing NO production and increasing Akt-eNOS signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources