Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May;16(5):454-464.
doi: 10.1111/j.1553-2712.2009.00412.x.

Development and validation of the Excess Mortality Ratio-adjusted Injury Severity Score Using the International Classification of Diseases 10th Edition

Free article

Development and validation of the Excess Mortality Ratio-adjusted Injury Severity Score Using the International Classification of Diseases 10th Edition

Jaiyong Kim et al. Acad Emerg Med. 2009 May.
Free article

Abstract

Objectives: This study aimed to develop and validate a new method for measuring injury severity, the excess mortality ratio-adjusted Injury Severity Score (EMR-ISS), using the International Classification of Diseases 10th Edition (ICD-10).

Methods: An injury severity grade similar to the Abbreviated Injury Scale (AIS) was converted from the ICD-10 codes on the basis of quintiles of the EMR for each ICD-10 code. Like the New Injury Severity Score (NISS), the EMR-ISS was calculated from three maximum severity grades using data from the Korean National Injury Database. The EMR-ISS was then validated using the Hosmer-Lemeshow goodness-of-fit chi-square (HL chi-square, with lower values preferable), the area under the receiver operating characteristic curve (AUC-ROC), and the Pearson correlation coefficient to compare it with the International Classification of Diseases 9th Edition-based Injury Severity Score (ICISS). Nationwide hospital discharge abstract data (DAD) from stratified-sample general hospitals (n = 150) in 2004 were used for an external validation.

Results: The total number of study subjects was 29,282,531, with five subgroups of particular interest identified for further study: traumatic brain injury (TBI, n = 3,768,670), traumatic chest injury (TCI,n = 1,169,828), poisoning (n = 251,565), burns (n = 869,020), and DAD (n = 26,374). The HL chi-square was lower for EMR-ISS than for ICISS in all groups: 42,410.8 versus 55,721.9 in total injury, 7,139.6 versus 20,653.9 in TBI, 6,603.3 versus 4,531.8 in TCI, 2,741.2 versus 9,112.0 in poisoning, 764.4 versus 4,532.1 in burns, and 28.1 versus 49.4 in DAD. The AUC-ROC for death was greater for EMR-ISS than for ICISS: 0.920 versus 0.728 in total injury, 0.907 versus 0.898 in TBI, 0.675 versus 0.799 in TCI, 0.857 versus 0.900 in poisoning, 0.735 versus 0.682 in burns, and 0.850 versus 0.876 in DAD. The Pearson correlation coefficient between the two scores was )0.68 in total injury, )0.76 in TBI, )0.86 in TCI, )0.69 in poisoning,)0.58 in burns, and )0.75 in DAD.

Conclusions: The EMR-ISS showed better calibration and discrimination power for prediction of death than the ICISS in most injury groups. The EMR-ISS appears to be a feasible tool for passive injury surveillance of large data sets, such as insurance data sets or community injury registries containing diagnosis codes. Additional further studies for external validation on prospectively collected data sets should be considered.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms