Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Nov;173(22):7233-9.
doi: 10.1128/jb.173.22.7233-7239.1991.

Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus

Affiliations
Comparative Study

Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus

J Hinnebusch et al. J Bacteriol. 1991 Nov.

Abstract

Spirochetes of the genus Borrelia have double-stranded linear plasmids with covalently closed ends. The physical nature of the terminal connections was determined for the 16-kb linear plasmid of the B31 strain of the Lyme disease agent Borrelia burgdorferi. Native telomeric fragments representing the left and right ends of this plasmid were isolated and subjected to Maxam-Gilbert sequence analysis. At the plasmid ends the two DNA strands formed an uninterrupted, perfectly palindromic, AT-rich sequence. This Borrelia linear plasmid consisted of a continuous polynucleotide chain that is fully base paired except for short single-stranded hairpin loops at each end. The left and right telomeres of the 16-kb plasmid were identical for 16 of the first 19 nucleotide positions and constituted an inverted terminal repeat with respect to each other. The left telomere of the 49-kb plasmid of strain B31 was identical to the corresponding telomere of the 16-kb plasmid. Different-sized plasmids of other strains of B. burgdorferi also contained sequences homologous to the left end of the 16-kb plasmid. When the borrelia telomeres were compared with telomeric sequences of other linear double-stranded DNA replicons, sequence similarities were noted with poxviruses and particularly with the iridovirus agent of African swine fever. The latter virus and a Borrelia sp. share the same tick vector. These findings suggest that the novel linear plasmids of Borrelia originated through a horizontal genetic transfer across kingdoms.

PubMed Disclaimer

References

    1. EMBO J. 1987 Dec 20;6(13):4219-25 - PubMed
    1. Nat New Biol. 1972 Oct 18;239(94):197-201 - PubMed
    1. Zentralbl Bakteriol Mikrobiol Hyg A. 1986 Dec;263(1-2):83-91 - PubMed
    1. Virology. 1987 Sep;160(1):20-30 - PubMed
    1. Nucleic Acids Res. 1986 Sep 11;14(17):6835-44 - PubMed

Publication types

LinkOut - more resources