Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 24;16(4):382-90.
doi: 10.1016/j.chembiol.2009.02.008.

Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes

Affiliations

Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes

Suk-Joon Hyung et al. Chem Biol. .

Abstract

Mass spectrometry (MS) is widely used to assess the binding of small molecules to proteins and their complexes. In many cases, subtle differences in the stability afforded by binding of ligands to protein assemblies cannot be detected by MS. Here we show that monitoring the unfolding of protein subunits, using ion mobility-MS, allows differentiation of the effects of ligand binding not normally observed by MS alone. Using wild-type and disease-associated variants of tetrameric transthyretin, MS data indicate that populations of the variant protein are less stable than wild-type. Ion mobility-MS, however, is able to show that the natural ligand of transthyretin, thyroxine, provides a larger stability increase to the tetramer composed of variant subunits than to the wild-type protein-ligand complex. Overall, therefore, our results have implications for small-molecule drug design directed at multiprotein targets.

PubMed Disclaimer

LinkOut - more resources