Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;112(3):p45-52.
doi: 10.1159/000214214. Epub 2009 Apr 24.

Expression and activity of SGLT2 in diabetes induced by streptozotocin: relationship with the lipid environment

Affiliations

Expression and activity of SGLT2 in diabetes induced by streptozotocin: relationship with the lipid environment

María F Albertoni Borghese et al. Nephron Physiol. 2009.

Abstract

Background/aims: Diabetes mellitus may impact on the regulation of renal Na+-glucose cotransporter type 2 (SGLT2), however, previous studies have yielded conflicting results on the effects of streptozotocin (STZ)-induced diabetes on SGLT-mediated glucose transport.

Methods: Diabetes was induced in male Wistar rats. The studies were performed at 3 (D3), 7 (D7) and 14 (D14) days after a single i.p. injection of STZ. SGLT2 activity was measured using alpha-14C-methyl glucose uptake in brush-border vesicles (BBV) from renal cortex, and SGLT2 expression was assessed by immunoblotting. Phospholipids were quantified by a modification of Fiske-Subarow's method after being separated by thin-layer chromatography.

Results: Glucose uptake was reduced in all groups of diabetic rats. SGLT2 expression decreased in D3 and D7. There was a decrease in sphingomyelin (SM) content and an increase in phosphatidylcholine (PC) content in BBV from D14 versus control, without differences in phosphatidylinositol (PI), phosphatidylserine (PS) and phosphatidylethanolamine (PE).

Conclusion: The downregulation of SGLT2 activity during STZ-induced diabetes may be a protective mechanism to control the excess of circulating glucose and could be a consequence of a decrease in SGLT2 expression in D3 and D7, whereas altered activity of SGLT2 in D14 could be a consequence of changes in membrane lipid composition. However, we cannot discard the possibility that the decrease in SGLT2 activity could be due to a covalent modification of the active site of the protein.

PubMed Disclaimer

Publication types

LinkOut - more resources