Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Nov 25;266(33):22333-40.

Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha

Affiliations
  • PMID: 1939256
Free article

Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha

S I Beale et al. J Biol Chem. .
Free article

Abstract

An enzyme extract from the phycocyanin-containing unicellular rhodophyte, Cyanidium caldarium, reductively transforms biliverdin IX alpha to phycocyanobilin, the chromophore of phycocyanin, in the presence of NADPH. Unpurified cell extract forms both 3(E)-phycocyanobilin, which is identical to the major pigment that is released from phycocyanin by methanolysis, and 3(Z)-phycocyanobilin, which is obtained as a minor methanolysis product. After removal of low molecular weight material from the cell extract, only 3(Z)-phycocyanobilin is formed. 3(E)-Phycocyanobilin formation from biliverdin IX alpha, and the ability to isomerize 3(Z)-phycocyanobilin to 3(E)-phycocyanobilin, are reconstituted by the addition of glutathione to the incubation mixture. Partially purified protein fractions derived from the initial enzyme extract form 3(Z)-phycocyanobilin plus two additional, violet colored bilins, upon incubation with NADPH and biliverdin IX alpha. Further purified protein fractions produce only the violet colored bilins from biliverdin IX alpha. One of these bilins was identified as 3(Z)-phycoerythrobilin by comparative spectrophotometry, reverse-phase high pressure liquid chromatography, and 1H NMR spectroscopy. A C. caldarium protein fraction catalyzes the conversion of 3(Z)-phycoerythrobilin to 3(Z)-phycocyanobilin. This fraction also catalyzes the conversion of 3(E)-phycoerythrobilin to 3(E)-phycocyanobilin. The conversion of phycoerythrobilins to phycocyanobilins requires neither biliverdin nor NADPH. The synthesis of phycoerythrobilin and its conversion to phycocyanobilin by extracts of C. caldarium, a species that does not contain phycoerythrin, indicates that phycoerythrobilin is a biosynthetic precursor to phycocyanobilin. The enzymatic conversion of the ethylidine group from the Z to the E configuration suggests that the E-isomer is the precursor to the protein-bound chromophore.

PubMed Disclaimer

Publication types

LinkOut - more resources