Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May:109 Suppl 1:222-9.
doi: 10.1111/j.1471-4159.2009.05942.x.

Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid

Affiliations
Free article

Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid

Attila Ambrus et al. J Neurochem. 2009 May.
Free article

Abstract

Dihydrolipoamide dehydrogenase (LADH) is a flavo-enzyme that serves as a subunit of alpha-ketoglutarate dehydrogenase complex (alpha-KGDHC). Reactive oxygen species (ROS) generation by alpha-KGDHC has been assigned to LADH (E3 subunit) and explained by the diaphorase activity of E3. Dysfunctions of alpha-KGDHC and concurrent ROS production have been implicated in neurodegeneration, ischemia-reperfusion, and other pathological conditions. In this work we investigated the in-depth details of ROS generation by isolated LADH and alpha-KGDHC. We found a parallel generation of superoxide and hydrogen peroxide by the E3 subunit of alpha-KGDHC which could be blocked by lipoic acid (LA) acting on a site upstream of the E3 subunit. The pathologically relevant ROS generation (at high NADH/NAD+ ratio and low pH) in the reverse mode of alpha-KGDHC could also be inhibited by LA. Our results contradict the previously proposed mechanism for pH-dependent ROS generation by LADH, showing no disassembling of the E3 functional homodimer at acidic pH using a physiologically relevant method for the examination. It is also suggested that LA could be beneficial in reducing the cell damage related to excessive ROS generation under pathological conditions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources