Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Sep;9(5):996-1005.
doi: 10.1016/j.meegid.2009.04.011. Epub 2009 Apr 23.

Population structure, origins and evolution of major Salmonella enterica clones

Affiliations
Review

Population structure, origins and evolution of major Salmonella enterica clones

Ruiting Lan et al. Infect Genet Evol. 2009 Sep.

Abstract

The genus Salmonella consists of two species S. enterica and S. bongori. S. enterica has a well defined subspecies structure with seven subspecies consistently delineated by sequence variation. Frequency of recombination between subspecies and within a subspecies is markedly different. Subspecies I undergoes frequent recombination as demonstrated recently, demystifying the long-held belief that Salmonella is a highly clonal organism. The majority of disease causing serovars are from subspecies I with the most important serovars in human health being Typhimurium and Typhi. Typhimurium has developed considerable diversity and may be a very old serovar. The majority of the isolates belong to a single clonal complex by multilocus sequence typing. Typhimurium isolates are divided into phage types and some of the phage types do not have a single origin as determined using mutational changes. Phage type DT104 is heterogeneous and represented in multiple sequence types, with its multidrug-resistant variant most successful causing epidemics in many parts of the world. Typhi, a human restricted serovar, is relatively young compared to Typhimurium, and has a low level of sequence variation. Single nucleotide polymorphisms (SNPs) have been shown to be very useful for typing and resolving relationships within Typhi. Genome sequences of 19 isolates revealed more than 1700 SNPs. The fully resolved phylogenetic tree allows one to trace the mutational changes occurred during clonal diversification. Genome wide SNPs have greatly enhanced our understanding of the evolution of Salmonella clones.

PubMed Disclaimer

Publication types

LinkOut - more resources