Impact of linker strain and flexibility in the design of a fragment-based inhibitor
- PMID: 19396178
- PMCID: PMC3178264
- DOI: 10.1038/nchembio.163
Impact of linker strain and flexibility in the design of a fragment-based inhibitor
Abstract
The linking together of molecular fragments that bind to adjacent sites on an enzyme can lead to high-affinity inhibitors. Ideally, this strategy would use linkers that do not perturb the optimal binding geometries of the fragments and do not have excessive conformational flexibility that would increase the entropic penalty of binding. In reality, these aims are seldom realized owing to limitations in linker chemistry. Here we systematically explore the energetic and structural effects of rigid and flexible linkers on the binding of a fragment-based inhibitor of human uracil DNA glycosylase. Analysis of the free energies of binding in combination with cocrystal structures shows that the flexibility and strain of a given linker can have a substantial impact on binding affinity even when the binding fragments are optimally positioned. Such effects are not apparent from inspection of structures and underscore the importance of linker optimization in fragment-based drug discovery efforts.
Figures





Similar articles
-
Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme.J Chem Inf Model. 2014 Dec 22;54(12):3362-72. doi: 10.1021/ci500375a. Epub 2014 Nov 18. J Chem Inf Model. 2014. PMID: 25369428
-
Mass spectrometry-based analysis of macromolecular complexes of Staphylococcus aureus uracil-DNA glycosylase and its inhibitor reveals specific variations due to naturally occurring mutations.FEBS Open Bio. 2019 Feb 9;9(3):420-427. doi: 10.1002/2211-5463.12567. eCollection 2019 Mar. FEBS Open Bio. 2019. PMID: 30868050 Free PMC article.
-
Uracil-directed ligand tethering: an efficient strategy for uracil DNA glycosylase (UNG) inhibitor development.J Am Chem Soc. 2005 Dec 14;127(49):17412-20. doi: 10.1021/ja055846n. J Am Chem Soc. 2005. PMID: 16332091 Free PMC article.
-
Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution.Future Med Chem. 2019 Jun;11(11):1323-1344. doi: 10.4155/fmc-2018-0319. Epub 2019 Jun 4. Future Med Chem. 2019. PMID: 31161802 Review.
-
Fragment-based drug discovery.J Med Chem. 2004 Jul 1;47(14):3463-82. doi: 10.1021/jm040031v. J Med Chem. 2004. PMID: 15214773 Review. No abstract available.
Cited by
-
Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands.Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Aug 1;66(Pt 8):887-92. doi: 10.1107/S1744309110023043. Epub 2010 Jul 27. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010. PMID: 20693660 Free PMC article.
-
Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors.Commun Chem. 2024 Feb 20;7(1):38. doi: 10.1038/s42004-024-01108-3. Commun Chem. 2024. PMID: 38378740 Free PMC article.
-
Exquisitely specific bisubstrate inhibitors of c-Src kinase.ACS Chem Biol. 2015 Jun 19;10(6):1387-91. doi: 10.1021/cb501048b. Epub 2015 Mar 31. ACS Chem Biol. 2015. PMID: 25793938 Free PMC article.
-
Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry: Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin.Chemistry. 2016 Oct 10;22(42):14826-14830. doi: 10.1002/chem.201603001. Epub 2016 Sep 7. Chemistry. 2016. PMID: 27604032 Free PMC article.
-
Base Excision Repair: Mechanisms and Impact in Biology, Disease, and Medicine.Int J Mol Sci. 2023 Sep 16;24(18):14186. doi: 10.3390/ijms241814186. Int J Mol Sci. 2023. PMID: 37762489 Free PMC article. Review.
References
-
- Erlanson DA, Wells JA, Braisted AC. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct. 2004;33:199–223. - PubMed
-
- Hann MM, Leach AR, Harper G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001;41:856–864. - PubMed
-
- Murray CW, Verdonk ML. The consequences of translational and rotational entropy lost by small molecules on binding to proteins. J. Comput. Aided Mol. Des. 2002;16:741–753. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- PubChem-Substance/57551971
- PubChem-Substance/57551972
- PubChem-Substance/57551973
- PubChem-Substance/57551974
- PubChem-Substance/57551975
- PubChem-Substance/57551976
- PubChem-Substance/57551977
- PubChem-Substance/57551978
- PubChem-Substance/57551979
- PubChem-Substance/57551980
- PubChem-Substance/57551981
- PubChem-Substance/57551982
- PubChem-Substance/57551983
- PubChem-Substance/57551984
- PubChem-Substance/57551985
- PubChem-Substance/57551986
- PubChem-Substance/57551987
- PubChem-Substance/57551988
- PubChem-Substance/57551989
- PubChem-Substance/57551990
- PubChem-Substance/57551991
- PubChem-Substance/57551992
- PubChem-Substance/57551993
- PubChem-Substance/57551994
- PubChem-Substance/57551995
- PubChem-Substance/57551996
- PubChem-Substance/57551997
- PubChem-Substance/57551998
- PubChem-Substance/57551999
- PubChem-Substance/57552000
- PubChem-Substance/57552001
- PubChem-Substance/57552002
- PubChem-Substance/57552003
- PubChem-Substance/57552004
- PubChem-Substance/57552005
- PubChem-Substance/57552006
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Chemical Information