Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Aug 6;114(6):1150-7.
doi: 10.1182/blood-2009-01-202606. Epub 2009 Apr 28.

The leukemic stem cell niche: current concepts and therapeutic opportunities

Affiliations
Review

The leukemic stem cell niche: current concepts and therapeutic opportunities

Steven W Lane et al. Blood. .

Abstract

The genetic events that contribute to the pathogenesis of acute myeloid leukemia are among the best characterized of all human malignancies. However, with notable exceptions such as acute promyelocytic leukemia, significant improvements in outcome based on these insights have not been forthcoming. Acute myeloid leukemia is a paradigm of cancer stem (or leukemia initiating) cells with hierarchy analogous to that seen in hematopoiesis. Normal hematopoiesis requires complex bidirectional interactions between the bone marrow microenvironment (or niche) and hematopoietic stem cells (HSCs). These interactions are critical for the maintenance of normal HSC quiescence and perturbations can influence HSC self-renewal. Leukemia stem cells (LSCs), which also possess limitless self-renewal, may hijack these homeostatic mechanisms, take refuge within the sanctuary of the niche during chemotherapy, and consequently contribute to eventual disease relapse. We will discuss the emerging evidence supporting the importance of the bone marrow microenvironment in LSC survival and consider the physiologic interactions of HSCs and the niche that inform our understanding of microenvironment support of LSCs. Finally, we will discuss approaches for the rational development of therapies that target the microenvironment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Putative mechanisms for AML stem cell and niche interactions in vivo. The bone marrow niche comprises endosteal (osteoblasts, osteoclasts, and acellular bone mineral matrix [osteopontin, calcium]) and perivascular components (comprising endothelial cells, CXCL-12 expressing adventitial reticular [CAR] cells, and MSCs). The niche provides support for self-renewal, quiescence, homing, engraftment, and proliferative potential for HSCs. LSCs may impair the function of the normal HSC niche by direct invasion or secretion of substances such as stem cell factor. LSCs can infiltrate these niches and may hijack these normal homeostatic processes, leading to enhanced self-renewal and proliferation, enforced quiescence, and resistance to chemotherapeutic agents. LSCs may also exhibit dysregulated homing and engraftment, leading to alternative niche formation.

Similar articles

Cited by

References

    1. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 2003;17:3029–3035. - PMC - PubMed
    1. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442:818–822. - PubMed
    1. Huntly BJ, Shigematsu H, Deguchi K, et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 2004;6:587–596. - PubMed
    1. Barabe F, Kennedy JA, Hope KJ, Dick JE. Modeling the initiation and progression of human acute leukemia in mice. Science. 2007;316:600–604. - PubMed
    1. Wei J, Wunderlich M, Fox C, et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell. 2008;13:483–495. - PMC - PubMed

Publication types