Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins
- PMID: 19402753
- PMCID: PMC2672614
- DOI: 10.1371/journal.pbio.1000096
Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins
Abstract
One-third of the 4,225 protein-coding genes of Escherichia coli K-12 remain functionally unannotated (orphans). Many map to distant clades such as Archaea, suggesting involvement in basic prokaryotic traits, whereas others appear restricted to E. coli, including pathogenic strains. To elucidate the orphans' biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains and generated comprehensive genomic context inferences to derive a high-confidence compendium for virtually the entire proteome consisting of 5,993 putative physical interactions and 74,776 putative functional associations, most of which are novel. Clustering of the respective probabilistic networks revealed putative orphan membership in discrete multiprotein complexes and functional modules together with annotated gene products, whereas a machine-learning strategy based on network integration implicated the orphans in specific biological processes. We provide additional experimental evidence supporting orphan participation in protein synthesis, amino acid metabolism, biofilm formation, motility, and assembly of the bacterial cell envelope. This resource provides a "systems-wide" functional blueprint of a model microbe, with insights into the biological and evolutionary significance of previously uncharacterized proteins.
Conflict of interest statement
Competing interests. The authors have declared that no competing interests exist.
Figures
References
-
- Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005;433:531–537. - PubMed
-
- Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 2007;5:e8. doi: 10.1371/journal.pbio.0050008. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
