Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles
- PMID: 19403606
- PMCID: PMC2727015
- DOI: 10.1113/jphysiol.2009.171876
Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles
Abstract
In striated muscle, activation of contraction is initiated by membrane depolarisation caused by an action potential, which triggers the release of Ca(2+) stored in the sarcoplasmic reticulum by a process called excitation-contraction coupling. Excitation-contraction coupling occurs via a highly sophisticated supramolecular signalling complex at the junction between the sarcoplasmic reticulum and the transverse tubules. It is generally accepted that the core components of the excitation-contraction coupling machinery are the dihydropyridine receptors, ryanodine receptors and calsequestrin, which serve as voltage sensor, Ca(2+) release channel, and Ca(2+) storage protein, respectively. Nevertheless, a number of additional proteins have been shown to be essential both for the structural formation of the machinery involved in excitation-contraction coupling and for its fine tuning. In this review we discuss the functional role of minor sarcoplasmic reticulum protein components. The definition of their roles in excitation-contraction coupling is important in order to understand how mutations in genes involved in Ca(2+) signalling cause neuromuscular disorders.
Figures
Comment in
-
Calsequestrin, triadin and more: the molecules that modulate calcium release in cardiac and skeletal muscle.J Physiol. 2009 Jul 1;587(Pt 13):3069-70. doi: 10.1113/jphysiol.2009.175083. J Physiol. 2009. PMID: 19567746 Free PMC article. No abstract available.
References
-
- Anderson AA, Treves S, Biral D, Betto R, Sandonà D, Ronjat M, Zorzato F. The novel skeletal muscle sarcoplasmic reticulum JP-45 protein. Molecular cloning, tissue distribution, developmental expression, and interaction with α1.1 subunit of the voltage-gated calcium channel. J Biol Chem. 2003;278:39987–39992. - PubMed
-
- Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity and disease. Physiol Rev. 2000;80:1215–1265. - PubMed
-
- Bleunven C, Treves S, Jinyu X, Leo E, Ronjat M, De Waard M, Kern G, Flucher BE, Zorzato F. SRP-27 is a novel component of the supramolecular signalling complex involved in skeletal muscle excitation-contraction coupling. Biochem J. 2008;411:343–349. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous