Rapid molecular characterization of Clostridium difficile and assessment of populations of C. difficile in stool specimens
- PMID: 19403775
- PMCID: PMC2708487
- DOI: 10.1128/JCM.02498-08
Rapid molecular characterization of Clostridium difficile and assessment of populations of C. difficile in stool specimens
Abstract
Our laboratory has developed testing methods that use real-time PCR and pyrosequencing analysis to enable the rapid identification of potential hypervirulent Clostridium difficile strains. We describe a real-time PCR assay that detects four C. difficile genes encoding toxins A (tcdA) and B (tcdB) and the binary toxin genes (cdtA and cdtB), as well as a pyrosequencing assay that detects common deletions in the tcdC gene in less than 4 h. A subset of historical and recent C. difficile isolates (n = 31) was also analyzed by pulsed-field gel electrophoresis to determine the circulating North American pulsed-field (NAP) types that have been isolated in New York State. Thirteen different NAP types were found among the 31 isolates tested, 13 of which were NAP type 1 strains. To further assess the best approach to utilizing our conventional and molecular methods, we studied the populations of C. difficile in patient stool specimens (n = 23). Our results indicated that 13% of individual stool specimens had heterogeneous populations of C. difficile when we compared the molecular characterization results for multiple bacterial isolates (n = 10). Direct molecular analysis of stool specimens gave results that correlated well with the results obtained with cultured stool specimens; the direct molecular analysis was rapid, informative, and less costly than the testing of multiple patient stool isolates.
Figures


Similar articles
-
Study of the frequency of Clostridium difficile tcdA, tcdB, cdtA and cdtB genes in feces of Calves in south west of Iran.Ann Clin Microbiol Antimicrob. 2014 Jun 5;13:21. doi: 10.1186/1476-0711-13-21. Ann Clin Microbiol Antimicrob. 2014. PMID: 24903619 Free PMC article.
-
Molecular analysis and genotyping of pathogenicity locus in Clostridioides difficile strains isolated from patients in Tehran hospitals during the years 2007-2010.Infect Genet Evol. 2019 Jul;71:205-210. doi: 10.1016/j.meegid.2019.03.010. Epub 2019 Mar 19. Infect Genet Evol. 2019. PMID: 30902742
-
Emergence of Clostridium difficile ribotype 027 in Korea.Korean J Lab Med. 2011 Jul;31(3):191-6. doi: 10.3343/kjlm.2011.31.3.191. Epub 2011 Jun 28. Korean J Lab Med. 2011. PMID: 21779194 Free PMC article.
-
The Importance of Therapeutically Targeting the Binary Toxin from Clostridioides difficile.Int J Mol Sci. 2021 Mar 13;22(6):2926. doi: 10.3390/ijms22062926. Int J Mol Sci. 2021. PMID: 33805767 Free PMC article. Review.
-
Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance.Gut Microbes. 2014 Jan-Feb;5(1):15-27. doi: 10.4161/gmic.26854. Epub 2013 Oct 31. Gut Microbes. 2014. PMID: 24253566 Free PMC article. Review.
Cited by
-
Clinical evaluation of a non-purified direct molecular assay for the detection of Clostridioides difficile toxin genes in stool specimens.PLoS One. 2020 Jun 3;15(6):e0234119. doi: 10.1371/journal.pone.0234119. eCollection 2020. PLoS One. 2020. PMID: 32492051 Free PMC article.
-
Establishment of a Novel Detection Platform for Clostridioides difficile Toxin Genes Based on Orthogonal CRISPR.Microbiol Spectr. 2023 Aug 17;11(4):e0188623. doi: 10.1128/spectrum.01886-23. Epub 2023 Jun 28. Microbiol Spectr. 2023. PMID: 37378559 Free PMC article.
-
Detection of mixed populations of Clostridium difficile from symptomatic patients using capillary-based polymerase chain reaction ribotyping.Infect Control Hosp Epidemiol. 2013 Sep;34(9):961-966. doi: 10.1086/671728. Epub 2013 Jul 12. Infect Control Hosp Epidemiol. 2013. PMID: 23917911 Free PMC article.
-
Multilocus sequence typing of Clostridium difficile.J Clin Microbiol. 2010 Mar;48(3):770-8. doi: 10.1128/JCM.01796-09. Epub 2009 Dec 30. J Clin Microbiol. 2010. PMID: 20042623 Free PMC article.
-
Flagellar switch inverted repeat impacts flagellar invertibility and varies Clostridioides difficile RT027/MLST1 virulence.bioRxiv [Preprint]. 2024 Sep 24:2023.06.22.546185. doi: 10.1101/2023.06.22.546185. bioRxiv. 2024. PMID: 39386689 Free PMC article. Preprint.
References
-
- Barbut, F., D. Decre, V. Lalande, B. Burghoffer, L. Noussair, A. Gigandon, F. Espinasse, L. Raskine, J. Robert, A. Mangeol, C. Branger, and J. C. Petit. 2005. Clinical features of Clostridium difficile-associated diarrhoea due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. J. Med. Microbiol. 54181-185. - PubMed
-
- Bartlett, J. G. 1992. Antibiotic-associated diarrhea. Clin. Infect. Dis. 15573-581. - PubMed
-
- Braun, V., T. Hundsberger, P. Leukel, M. Sauerborn, and C. von Eichel-Streiber. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 18129-38. - PubMed
-
- Coignard, B., F. Barbut, K. Blanckaert, J. M. Thiolet, I. Poujol, A. Carbonne, J. C. Petit, and J. C. Desenclos. 2006. Emergence of Clostridium difficile toxinotype III, PCR-ribotype 027-associated disease, France, 2006. Euro. Surveill. 11E0609141. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials