Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May 21;113(20):5855-64.
doi: 10.1021/jp9019987.

Electron super-rich radicals. III. On the peculiar behavior of the aminodihydroxymethyl radical in the gas phase

Affiliations

Electron super-rich radicals. III. On the peculiar behavior of the aminodihydroxymethyl radical in the gas phase

Joshua A Gregersen et al. J Phys Chem A. .

Abstract

In contrast to previously reported electron-super-rich trihydroxy-, triamino- and diaminohydroxymethyl radicals, the title aminodihydroxymethyl radical (1) generates a fraction of metastable species in the form of their deuterium isotopologues. The lifetimes of metastable radicals produced by femtosecond collisional electron transfer to aminodihydroxymethyl cations exceed 4 mus. The main fraction of 1 dissociates by fast loss of a hydroxyl hydrogen atom to form carbamic acid. Loss of an amino hydrogen atom is less facile and becomes <10% competitive at high internal energies or if the main dissociation is slowed down by deuterium isotope effects. RRKM calculations of unimolecular rate constants on a CCSD(T)/aug-cc-pVTZ potential energy surface gave a reasonably good fit for the competitive dissociations of 1 but not for the fraction of nondissociating radicals. The metastable species are attributed to excited electronic states which are predicted to have favorable Franck-Condon factors for being formed by collisional electron transfer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources