Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug 7;259(3):533-40.
doi: 10.1016/j.jtbi.2009.04.013. Epub 2009 May 3.

Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates

Affiliations

Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates

Ashish Anand et al. J Theor Biol. .

Abstract

We investigate the multiclass classification of cancer microarray samples. In contrast to classification of two cancer types from gene expression data, multiclass classification of more than two cancer types are relatively hard and less studied problem. We used class-wise optimized genes with corresponding one-versus-all support vector machine (OVA-SVM) classifier to maximize the utilization of selected genes. Final prediction was made by using probability scores from all classifiers. We used three different methods of estimating probability from decision value. Among the three probability methods, Platt's approach was more consistent, whereas, isotonic approach performed better for datasets with unequal proportion of samples in different classes. Probability based decision does not only gives true and fair comparison between different one-versus-all (OVA) classifiers but also gives the possibility of using them for any post analysis. Several ensemble experiments, an example of post analysis, of the three probability methods were implemented to study their effect in improving the classification accuracy. We observe that ensemble did help in improving the predictive accuracy of cancer data sets especially involving unbalanced samples. Four-fold external stratified cross-validation experiment was performed on the six multiclass cancer datasets to obtain unbiased estimates of prediction accuracies. Analysis of class-wise frequently selected genes on two cancer datasets demonstrated that the approach was able to select important and relevant genes consistent to literature. This study demonstrates successful implementation of the framework of class-wise feature selection and multiclass classification for prediction of cancer subtypes on six datasets.

PubMed Disclaimer

Publication types

LinkOut - more resources