Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr-Jun;6(2):281-95.
doi: 10.1109/TCBB.2007.70246.

Statistical alignment with a sequence evolution model allowing rate heterogeneity along the sequence

Affiliations

Statistical alignment with a sequence evolution model allowing rate heterogeneity along the sequence

Ana Arribas-Gil et al. IEEE/ACM Trans Comput Biol Bioinform. 2009 Apr-Jun.

Abstract

We present a stochastic sequence evolution model to obtain alignments and estimate mutation rates between two homologous sequences. The model allows two possible evolutionary behaviors along a DNA sequence in order to determine conserved regions and take its heterogeneity into account. In our model, the sequence is divided into slow and fast evolution regions. The boundaries between these sections are not known. It is our aim to detect them. The evolution model is based on a fragment insertion and deletion process working on fast regions only and on a substitution process working on fast and slow regions with different rates. This model induces a pair hidden Markov structure at the level of alignments, thus making efficient statistical alignment algorithms possible. We propose two complementary estimation methods, namely, a Gibbs sampler for Bayesian estimation and a stochastic version of the EM algorithm for maximum likelihood estimation. Both algorithms involve the sampling of alignments. We propose a partial alignment sampler, which is computationally less expensive than the typical whole alignment sampler. We show the convergence of the two estimation algorithms when used with this partial sampler. Our algorithms provide consistent estimates for the mutation rates and plausible alignments and sequence segmentations on both simulated and real data.

PubMed Disclaimer

Similar articles

Cited by