Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Sep;225(1):24-8.
doi: 10.1016/j.expneurol.2009.04.024. Epub 2009 May 4.

Protective effects of microglia in multiple sclerosis

Affiliations
Review

Protective effects of microglia in multiple sclerosis

Isabella Napoli et al. Exp Neurol. 2010 Sep.

Abstract

The role of microglia in demyelinating neurodegenerative diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) is still controversial. Although microglial cells are known as the professional phagocytes and executer of innate immunity in the central nervous system (CNS), it is believed that microglia are rather neurotoxic in these diseases. However, there is recent evidence indicating that microglia could also exert a neuroprotective function in MS and EAE. First evidence for the protective effect of immune cells in CNS diseases emerged from studies in invertebrates. In the medicinal leech, the process of regeneration begins with rapid activation and accumulation of phagocytic glial cells at the lesion site followed by phagocytosis of damaged tissue by these cells which promoted robust neural regeneration. In vertebrates, several lines of evidence demonstrate that microglia are also involved in neuroprotection by the secretion of soluble mediators that trigger neural repair and usually contribute to the creation of an environment conductive for regeneration. The efficient removal of apoptotic cells and clearance of debris at the lesion site and the recruitment of stem cell populations as well as the induction of neurogenesis are directly correlated. These findings suggest that microglia play a major role in creating a microenvironment for repair and regenerative processes in demyelinating neuroinflammatory diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms