Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;76(1-2):14-8.
doi: 10.1016/j.bioelechem.2009.04.001. Epub 2009 Apr 15.

Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone

Affiliations

Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone

Stefano Freguia et al. Bioelectrochemistry. 2009 Sep.

Abstract

Lactococcus lactis is a gram-positive, normally homolactic fermenter that is known to produce several kinds of membrane associated quinones, which are able to mediate electron transfer to extracellular electron acceptors such as Fe(3+), Cu(2+) and hexacyanoferrate. Here we show that this bacterium is also capable of performing extracellular electron transfer to anodes by utilizing at least two soluble redox mediators, as suggested by the two-step catalytic current developed. One of these two mediators was herein suggested to be 2-amino-3-dicarboxy-1,4-naphthoquinone (ACNQ), via evaluation of standard redox potential, ability of the bacterium to exploit the quinone when exogenously provided, as well as by high performance liquid chromatography coupled with UV spectrum analysis. During electricity generation, L. lactis slightly deviated from its normal homolactic metabolism by excreting acetate and pyruvate in stoichiometric amounts with respect to the electrical current. In this metabolism, the anode takes on the role of electron sink for acetogenic fermentation. The finding that L. lactis self-catalyses anodic electron transfer by excretion of redox mediators is remarkable as the mechanisms of extracellular electron transfer by pure cultures of gram-positive bacteria had previously never been elucidated.

PubMed Disclaimer

Publication types

LinkOut - more resources